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RimSense: Enabling Touch-based Interaction on Eyeglass Rim Using
Piezoelectric Sensors
WENTAO XIE, Hong Kong Univ. of Science and Technology and Southern Univ. of Science and Technology
HUANGXUN CHEN, Hong Kong University of Science and Technology (Guangzhou)
JING WEI, University of Melbourne
JIN ZHANG, Southern University of Science and Technology
QIAN ZHANG, Hong Kong University of Science and Technology

Smart eyewear’s interaction mode has attracted significant research attention. While most commercial devices have adopted
touch panels situated on the temple front of eyeglasses for interaction, this paper identifies a drawback stemming from
the unparalleled plane between the touch panel and the display, which disrupts the direct mapping between gestures and
the manipulated objects on display. Therefore, this paper proposes RimSense, a proof-of-concept design for smart eyewear,
to introduce an alternative realm for interaction - touch gestures on eyewear rim. RimSense leverages piezoelectric (PZT)
transducers to convert the eyeglass rim into a touch-sensitive surface. When users touch the rim, the alteration in the
eyeglass’s structural signal manifests its effect into a channel frequency response (CFR). This allows RimSense to recognize
the executed touch gestures based on the collected CFR patterns. Technically, we employ a buffered chirp as the probe signal
to fulfil the sensing granularity and noise resistance requirements. Additionally, we present a deep learning-based gesture
recognition framework tailored for fine-grained time sequence prediction and further integrated with a Finite-State Machine
(FSM) algorithm for event-level prediction to suit the interaction experience for gestures of varying durations. We implement
a functional eyewear prototype with two commercial PZT transducers. RimSense can recognize eight touch gestures on
the eyeglass rim and estimate gesture durations simultaneously, allowing gestures of varying lengths to serve as distinct
inputs. We evaluate the performance of RimSense on 30 subjects and show that it can sense eight gestures and an additional
negative class with an F1-score of 0.95 and a relative duration estimation error of 11%. We further make the system work
in real-time and conduct a user study on 14 subjects to assess the practicability of RimSense through interactions with two
demo applications. The user study demonstrates RimSense’s good performance, high usability, learnability and enjoyability.
Additionally, we conduct interviews with the subjects, and their comments provide valuable insight for future eyewear design.
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(a) On the temple front.

(b) On the rim.

Fig. 1. Eyewear interaction.

(a) Zoom-in (b) Zoom-out (c) Slide-left (d) Slide-right

(e) Press (f) Tap-left (g) Tap-mid (h) Tap-right

Fig. 2. RimSense supports eight input gestures that are performed on the rim.

1 INTRODUCTION
Smart eyewear, commonly referred to as AR glasses, represents a novel form of smart wearable technology that
employs advanced waveguide technology to project graphical information onto the eyeglass. According to a
recent market report, the public demand for AR glasses is projected to increase considerably in the coming years,
with an anticipated market value of up to 883.4 million US dollars by 2025 [1].

Interactions with smart eyewear have undergone comprehensive research, including gaze gestures [12, 25,
31, 37, 38, 47, 65], facial expressions [28, 29, 46, 49, 60, 71], head movements [22, 53, 75, 77], mid-air gestures
[15, 17–20, 27, 34, 42, 76], touch gestures [2, 4, 7–10, 55, 66, 70] and etc. Among these approaches, touch panels
positioned at the temple region of the eyeglass frame, as illustrated in Figure 1(a), have become the predominant
mode of interaction in most commercial AR glasses [2, 4, 7–10]. However, despite the touch panel’s recognition
reliability, it is noticed that the eyeglass temple is not aligned with the same plane as the display. Consequently,
to manipulate virtual objects on display, a user slides the eyeglass temple forward and backward to make a cursor
shuffle between the left and right sides and then confirms a selection by clicking on the panel. That says the slide
direction is perpendicular to the display. This discrepancy disrupts the inherent mapping between gestures and
manipulated objects and goes against the previously established user habits through the use of touch screens on
smartphones and tablets.
This motivates us to introduce an alternative realm of interaction - eyewear rim to address the previously

mentioned discrepancy. As shown in Figure 1(b), the user can navigate the screen between left and right by
executing a left or right slide gesture on the upper rim. Furthermore, suppose there are four app icons positioned
on the glass, the user can touch the corresponding locations on the rim to open the target app. This design of
interaction introduces a natural mapping, a principle well-regarded in interaction design practices [52], connecting
the gestures employed for control to the display itself, as the eyewear rim exists within the same plane as the
display.

In this study, our goal is to propose and evaluate a proof-of-concept design that makes the rim of an eyeglass
interactable. A potential hardware configuration for this design is to incorporate a touch panel, e.g., utilizing thin
thread [36] in the shape of an eyeglass rim. However, fabricating slender touch-sensitive material to accommodate
diverse rim shapes while simultaneously upholding stable recognition accuracy is challenging. Furthermore,
the thin structure could be susceptible to wear and tear from prolonged usage, thereby potentially leading to
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degraded recognition performance. Therefore, we propose to convert the eyeglass rim into a touch-sensitive
surface via an external stimulus source rather than add extra material directly onto the already slender rim.
Drawing inspiration from previous research [54], we choose piezoelectric (PZT) transducers as the facilitators for
our concept. The sheet-like shape of PZT transducers is well-suited for seamless integration with eyeglasses.
Moreover, recent advancements in material science have showcased the feasibility of transparent PZT sensors
[58, 59], thereby mitigating potential vision obstruction issues. As shown in Figure 3, our prototype incorporates
two compact PZT transducers affixed to the eyeglass. One transducer is responsible for generating imperceptible
vibrations, while the other is tasked with reception to detect touch gestures. The underlying principle is that
the two sensors, in conjunction with the eyeglass, form a vibration system with a structural signature - channel
frequency response (CFR) shown in Figure 3 - during vibration. A user’s touch on the rim results in a modification
in this structural signature, the pattern of which depends on the touch manner. Therefore, the touch gesture can
be recognized by detecting and classifying this changing pattern.

To realize such a system, we encounter two major challenges: waveform design for stimulus source, i.e., probe
signal, and algorithm design tailored for real-time gesture detection. In the first aspect, our goal is to have a
waveform with both noise resistance and high sensing granularity. However, in existing relevant works [54, 67],
these two objectives generally contradict each other. That says, it is common to use a damping window (such as the
Hanning window) on the probe signal to reduce the impact of impulse noise caused by sudden frequency jumps
between successive probes. Unfortunately, this approach inevitably limits the effective sensing bandwidth and
reduces sensing granularity. Drawing inspiration from waveform design in the communication domain [21, 40],
we adopt a buffered chirp design to incorporate gradual frequency changes between successive probes instead of
applying a damping window. This approach allows us to maintain a wide sensing bandwidth while effectively
reducing impulse noise. In the second aspect, we first design a set of gestures to fulfill interaction requirements
on the eyeglass rim, as illustrated in Figure 2. Compared with the detection of static grasping gestures in [54],
we notice that interaction gestures on the eyeglass rim inherently have varying durations. For instance, in our
real-world experiments, tapping actions (Figure 2(f)-(h)) might only take 0.5 seconds, whereas zooming actions
(Figure 2(a)-(b)) could last for up to 3 seconds. Moreover, different users might exhibit diverse tendencies in
terms of gesture speed. An intuitive approach for detection is to utilize classification techniques, such as random
forest, alongside a sliding detection window. However, producing a single prediction within a fixed detection
window does not yield a satisfactory real-time interaction experience for gestures with varying durations. This
is because using a long window sacrifices detection latency for short gestures, while a short window sacrifices
detection accuracy for long gestures. To overcome this dilemma, we propose to enable fine-grained timestep-level
prediction that avoids gesture prediction on a window basis. The proposed scheme predicts the gesture for every
timestep and subsequently derives a reliable event-level prediction for each gesture event. This approach makes
it more adaptable to gestures of arbitrary durations. For long gestures, we can aggregate features from relevant
timeslots to achieve high detection accuracy. For short gestures, we can detect the concluding timeslot promptly
to provide an instantaneous interactive response. Furthermore, the fine-grained timestep-level prediction greatly
supports the measurement of each gesture’s duration. This broadens the design scope of the gesture set, as the
same gesture with different durations can function as distinct gesture inputs. For instance, a long tap and a short
tap can be programmed to execute different control tasks.
Our resulting system, named RimSense and depicted in Figure 4, has three modules. In the probe signal

generation module, we utilize an FMCW signal with a buffered chirp design as the probe signal. This signal is
applied to one PZT transducer, transforming the eyeglass rim into a touch-sensitive surface. In the CFR extraction
module, we apply signal processing to the received signal from the other PZT transducer. This processing is
aimed at extracting CFR features relevant to gestures. In the real-time gesture recognition module, we design a
deep learning-based classifier to generate predictions at the timestep level using the extracted CFR features. In
contrast to conventional classifiers like random forest and SVM, deep neural networks offer greater flexibility
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Fig. 3. Sensing principle.

for adapting to the requirements of timestep-level prediction. In particular, RimSense’s classifier (Figure 10)
incorporates CNN blocks to capture features from CFR amplitude and phase and GRU blocks to generate features
for each timestep, facilitating timestep-level prediction. In addition, self-attention blocks are used to relate the
CNN blocks and GRU blocks. Furthermore, data augmentation techniques are implemented to enhance classifier
performance and ease the demand for extensive training dataset collection. Building upon the timestep-level
predictions, we develop a Finite-State Machine (FSM) algorithm (Figure 12) to achieve event-level prediction.
This approach ensures real-time gesture recognition that delivers a satisfactory user interaction experience.

Our contribution can be summarized as follows. The main contribution is that, to the best of our knowledge,
this study is the first to showcase the feasibility of utilizing the eyeglass rim as a new interaction space for smart
eyewear. We present a proof-of-concept interaction system based on PZT sensors that transform the slim rim
into a touch-sensitive surface, enabling the recognition of eight distinct touch gestures on the eyeglass rim.
These gestures, including zoom-in, zoom-out, slide-left, slide-right, press, tap-left, tap-mid, and tap-right, as
depicted in Figure 2, are selected to align with the common experiences when interacting with a smartphone1.
Additionally, we adopt the probe signal with a buffered chirp to fulfil the need of both sensing granularity
and noise resistance (Section 3.1). Furthermore, we propose transitioning from window-level to timestep-level
prediction granularity to suit the interaction experience for gestures with varying durations. We devise a deep
learning-based gesture recognition framework for timestep-level prediction, integrated with an FSM algorithm
to enable event-level prediction to support real-time gesture inference (Section 3.3). Lastly, we implement a
functional eyewear prototype that integrates two commercial PZT transducers into eyeglasses with real-time
operation. We conduct two studies to evaluate RimSense’s performance: an offline study involving 30 participants
to assess gesture recognition accuracy using leave-one-subject-out validation (Section 5), and a user study
involving 14 participants to evaluate usability across two demo applications (Section 6). The results demonstrate
RimSense’s high accuracy (F1-score of 0.95 and 11% relative error in gesture duration estimation), high usability,
learnability, and enjoyability. In addition, our interviews with the subjects provide valuable insight into the future
development of smart eyewear.

2 SENSING PRINCIPLES
When subjected to external probe signals, an object exhibits different damping factors across different probing
frequencies, depending on its shape and structure. In other words, each object generates its own signature
response given a probe source. This distinct signature response is regarded as its channel frequency response
(CFR). Conversely, if we can detect an object’s CFR, we may be able to infer its structural characteristics [57].
RimSense leverages this principle to sense touch gestures. As illustrated in Figure 3, when human fingers touch

1In this research, we restrict the tap and slide gestures to be performed only on the upper side of the rim.
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Probe signal generation

Chirp pattern design

Frequency modulation

CFR feature extraction

Background subtraction

CFR calculation

Real-time gesture recognition

Event-level prediction

Timestep-level prediction

Fig. 4. RimSense’s system overview Fig. 5. RimSense prototype.
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Fig. 7. CFR feature extraction. (a) A frame of CFR. (b) 3s of
CFRs. (c) 3s of CFRs after background subtraction. (1st row:
amplitude, 2nd row: phase angle)

the eyeglass, the eyeglass’s structure undergoes alteration, thereby causing changes in its CFR. Thus, RimSense
can infer the touch gesture by recognizing the CFR changing pattern. As mentioned in Section 1, an eyeglass is
equipped with two PZT sensors. PZT sensors can transduce between the vibration signal and the electrical signal.
One of these sensors employs probe signals, represented as 𝑥 , to induce specific vibrations in the eyeglass, while
the other sensor collects the resultant response signal, denoted as 𝑦. The CFR can be computed as 𝐻 = 𝑌

𝑋
, where

𝑋 and 𝑌 correspond to the Fourier transforms of 𝑥 and 𝑦, respectively. The CFR 𝐻 encapsulates information
about the touch gesture.

3 SYSTEM DESIGN
The system overview of RimSense is depicted in Figure 4. RimSense contains three modules. The first is the probe
signal generation module. This module generates a specially-designed frequency-buffered chirp signal tailored
for CFR measurement. The second is the CFR feature extraction module. This module takes the measured probe
signal as the input and computes the CFR patterns caused by the user’s input gesture. Based on the computed
CFR pattern, the third module, the real-time gesture recognition module uses a deep learning model for tracking
the input gesture at the timestep level and further integrates with a finite state machine to achieve real-time
event-level gesture prediction. The following sections elaborate on each individual module respectively.

3.1 Probe Signal Generation
As discussed in Section 2, RimSense detects a touch gesture by monitoring the CFR pattern. The common way to
measure the CFR of an object is to use chirp signals whose frequency linearly sweeps over a predefined range
[54, 61, 62, 67]. However, for vibration-based designs [54, 67], to reduce the impulse noise caused by sudden
frequency jump between successive chirps (Figure 6(a)), a Hanning window is often used to damp the starting
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Fig. 8. The CFR patterns of a subject performing the eight touch gestures. (Color represents amplitude)
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Fig. 9. The CFR patterns of another subject performing the eight touch gestures.

and ending portions of the chirp signal. One problem with this design is that it limits the usable bandwidth for
CFR measurement, as shown in Figure 6(b).

In RimSense, we leverage a frequency-buffered chirp signal to maintain the maximal usable bandwidth while
not causing any impulse noises. The rationale of the design is described as follows. Without loss of generality,
we assume a chirp signal is an up-chirp that sweeps from the lowest designated frequency to the highest. After
the frequency reaches the highest, we append a short down-chirp signal as a buffer to let the frequency drops
continuously from the highest to the lowest. In this way, the frequency flows smoothly from the current chirp
to the next chirp, and no impulse noise will be generated. The frequency-buffered chirp design is shown in
Figure 6(c). Note that in the subsequent processes, the buffering down-chirp is discarded, and only the up-chirp
is kept for further processing.
In practice, we use frequency modulation to generate the probe signals. We first compute the frequency

pattern as a function of time. This frequency function is denoted as 𝑓 (𝑡). Then, the probe signal is derived as
𝑥 (𝑡) = 𝑐𝑜𝑠 (2𝜋

∫ 𝑡

0 𝑓 (𝑡)𝑑𝑡). In RimSense, the designated frequency 𝑓 (𝑡) vibrates linearly and periodically from
20𝑘𝐻𝑧 to 40𝑘𝐻𝑧. Also, the durations for the up-chirp and down-chirp are 19𝑚𝑠 and 1𝑚𝑠 . Therefore, within each
cycle of 𝑓 (𝑡), it goes from the lowest to the highest for the first 19𝑚𝑠 and from the highest to the lowest for the
last 1𝑚𝑠 . The designed probe pattern is fed to one of the PZT sensors on the glass to vibrate the eyewear system.
It is worth noting that although the eyewear is vibrated by a PZT sensor, the vibration is imperceivable because
of the extremely low power and high frequency. According to our user study described in Section 6, none of our
participants noticed any vibration or noise generated by the eyewear.

3.2 CFR Feature Extraction
For each frame of the transmitted and received signals, we denote 𝑥 as the transmitted up-chirp signal and 𝑦
as the corresponding received up-chirp. Then, the CFR is computed as 𝐻 = 𝑌

𝑋
as introduced in Section 2. Note

that here, 𝐻 is a complex sequence. We decompose 𝐻 into amplitude and phase as 𝐻 = 𝐴𝑒 𝑗𝜃 , and we keep the
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Fig. 10. Model architecture.

Table 1. Model parameters.

Layer Parameters
ResBlock1D 1 Kernel #: 128, kernel size: 3, stride: 2
ResBlock1D 2 Kernel #: 64, kernel size: 3, stride: 2
ResBlock1D 3 Kernel #: 32, kernel size: 3, stride: 1
ResBlock1D 4 Kernel #: 16, kernel size: 3, stride: 1
Self-attention Input: 32, embedding: 64, head #: 8

GRU Input: 64, embedding: 64, bi-directional
Linear - 1 Input: 128, output: 64, dropout rate: 0.5
Linear - 2 Input: 64, output: 9

amplitude 𝐴 and phase angle 𝜃 to characterize the CFR of the current frame. Figure 7(a) depicts a frame of CFR.
Note that we discard the signal outside of the 20-40𝑘𝐻𝑧 range.
RimSense transmits a frame of probe signal every 20𝑚𝑠 , so the frame rate for CFR is 50𝐻𝑧. Therefore, we

can stack multiple CFR frames to see how a touch gesture influences CFR. Figure 7(b) shows 150 CIR frames
(3 seconds) of a subject performing a sweep-left on the glass. However, We can only observe mild disturbance
patterns in the CFR amplitude and there is almost no change in the CFR phase angle. This is because of the strong
static CIR components that do not vary over time. Therefore, we can apply a background subtraction process to
mitigate the effect of the static components. We achieve this by subtracting a frame by the frame 0.02𝑠 ahead of
time. Figure 7(c) shows the CIR amplitude and phase angle after background subtraction, and we can see clear
patterns that represent a touch gesture. For the rest of this paper, we use the term "CIR patterns" to refer to the
stack of a series of CFR amplitude and phase angle signals that have undergone background subtraction.

Figure 8 and Figure 9 depict the CIR patterns of two different subjects performing the eight touch gestures. We
can observe that the CFR patterns of the two subjects share some similarities for the same gesture, especially for
press and tap gestures. However, the duration of the same gesture between these two subjects varies a lot. For
example, the first subject performs a tap-mid within 0.5𝑠 , but it takes around 2.5𝑠 to perform the same gesture for
the second subject. This variation in gesture duration brings a major challenge for the design of RimSense which
will be discussed in the next section.

3.3 Real-time Gesture Recognition
Next, we discuss how RimSense recognizes the performed gestures based on the CFR patterns derived from the
previous module. Due to the varied gesture duration between different gestures and subjects, achieving real-time
prediction is challenging. This is because it is hard to balance the length of the gesture detection window and the
delay caused by the window. When a large detection window (e.g., a 3-second window) is used, the prediction lag
will be large, especially for the short gestures. This is because it would take a long time for the gesture (patterns
of high amplitude in Figure 8 and Figure 9) to move out of the detection window. Instead, If a shorter detection
window is used, it may not cover the long gestures so the gesture may not be correctly predicted, particularly for
gestures with blank CFR patterns in the middle (Figure 9(e)-Figure 9(h)).
In this module, we design a two-step approach to resolve the above challenge. First, we use a deep-learning

model to predict the performed gesture for each time step. This facilitates the prediction of the exact start and
end time of a gesture. Next, we use a finite-state machine to decide when is the correct time to give a gesture
prediction.
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3.3.1 Timestep-level Prediction. The deep learning model architecture is depicted in Figure 10. It contains four
stages, the convolutional stage, the attention stage, the recurrent stage, and the output stage. The convolutional
stage takes a pair of CFR patterns as the input and passes them through a series of convolutional layers. Specifically,
the convolutional stage has two branches, one for processing the CFR amplitude and the other for the CFR phase
angle. Each of these two branches stacks four classic residual blocks [26]. After the convolutional stage, the
processed CFR amplitude and phase angle features are concatenated along the frequency dimension and fed to
the attention stage where one layer of multi-head self-attention [68] is applied. In the recurrent stage, a Gated
Recurrent Unit (GRU) is applied to further process the feature and produce an embedding for each timestep.
Finally, at the output stage, a fully-connected layer is applied to each timestep embedding to give the prediction
at that timestep. The detailed network parameters are summarized in Table 1. Note that the CFR frame rate is
50𝐻𝑧, and it will be down-sampled to 12.5𝐻𝑧 by the convolutional stage. Therefore, we resample the ground
truth label to 12.5𝐻𝑧 to make sure every timestep has a label.
To increase the robustness of the model, we apply a few data augmentation techniques to enhance the

training dataset. The data collection process is described in Section 5.1. For each original sample, we apply three
augmentation techniques [30] to generate a new sample, and the augmentation pipeline is applied to each original
sample five times to enlarge the dataset by five times. The techniques are: (i) shifting: to lag or move forward a
sample by a time randomly selected from -1.5 to 1.5 seconds for simulating the randomness that a gesture can
appear anywhere in the input CFR patterns; (ii) accelerating: to accelerate a sample by a factor chosen from 1.0
to 1.5 for simulating different gesture speeds; (iii) scaling: to scaling a sample with a scaling factor 𝑠 ∼ N(1, 0.22)
for simulating different gesture strengths. In our evaluation, we have collected 3586 samples, and the dataset size
is 15238 samples after data augmentation. An important thing to note here is that although we have balanced the
number of samples for each gesture in our data collection process (Section 5.1), since our model is to predict the
gesture at each timestep, the total number of timesteps for each gesture is unbalanced. Therefore, we compute
the total number of timesteps for each gesture and compensate for the unbalance through class weights.

Examples of timestep-level gesture prediction are shown in Figure 11. These two examples depict the prediction
between the time when the gesture just arrives in the detection window and when the gesture is about to leave
the detection window. The time gap between adjacent figures is 1 second.

3.3.2 Event-level Prediction. From examples in Figure 11, we can observe that a gesture will remain in the
detection window for several seconds. However, in real-time usage, we want the gesture command to be issued
only once as soon as the gesture is performed. Therefore, we propose a finite-state machine (FSM)-based algorithm
to decide the exact time when a gesture is over, and the gesture prediction is given only at this particular time
point. The FSM is shown in Figure 12.

We first define the prediction front (PF) as the last 5 samples (0.4𝑠) of the model prediction. If the majority of the
predictions in the prediction front are not null, we say this is a positive prediction front, otherwise, the prediction
front is negative. There are two states in the FSM, the wait-for-gesture state and the wait-for-prediction state.
The following walk through one cycle of the FSM to show how a gesture event is predicted. (1) The system starts
with the wait-for-gesture state. If the PF is negative, then the system remains in this state. Instead, if the PF is
positive, it means the detection window is about to welcome a gesture (Figure 11(a) and Figure 11(e)). Then,
the system moves to the wait-for-prediction state. It means the system is expected to give a prediction soon.
(2) At the wait-for-prediction state, if the PF gives a positive reading again, then the system will do nothing
because it means the gesture is not finished yet. An example of this case is shown in Figure 11(b). Once the PF
gives a negative at this state, the system gives a gesture prediction because it means the user has just finished
a gesture input. Examples of this state are Figure 11(c) and Figure 11(f). After that, the system returns to the
wait-for-gesture state and waits for another round of gesture prediction. Note that when predicting a gesture
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Fig. 11. Timestep-level gesture prediction. (a-d) Zoom-in. (e-h) Tap-right. (1st
row: CFR amplitude, 2nd row: CFR phase angle, 3rd row: prediction and ground
truth)
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Fig. 12. The FSM for event-level predic-
tion.

event, the system summarizes all the timestep-level predictions in the current detection window and outputs the
gesture class (except for the null class) with the longest duration. Also, the gesture duration is output as well.
In real-time usage, we configure RimSense so that it gives a prediction (either a gesture or a null) every 0.2

seconds, i.e., 5𝐻𝑧 refresh rate. It is worth noting that in the real world, there might be cases when one gesture
is immediately followed by other gestures. In other words, there might be two or more different gestures in
one detection window. To mitigate the influence that one gesture may have on the prediction of the following
gestures, we use a feature masking technique to mask the CFR patterns of previous gestures if they have been
output by RimSense. Specifically, once a gesture event is recognized by RimSense, the system replaces the CFR
patterns that belong to this gesture with random noise 𝑛 ∼ N(0, 0.012).

4 IMPLEMENTATION
The hardware prototype of RimSense is shown in Figure 5. We use a standard pair of glasses for building the
prototype, and we affix two commercial PZT sensors on the upper-left and upper-right corners of the right glass
using a glue gun. The PZT sensors, of type PUI Audio AB1070B-LW100-R [5], are 10𝑚𝑚 in diameter and 0.12𝑚𝑚

in thickness. The PZT sensors are connected to an audio interface card of type Focusrite Scarlett 2i2 [6] through
a 3.5mm audio interface. The audio interface card is connected to a 13-inch MacBook Pro 2019 laptop with a
1.4 GHz Quad-Core Intel Core i5 CPU for software processing. The software of RimSense is implemented using
Python 3.8. The deep learning model is developed with PyTorch 1.10.0 and trained on a server with an NVIDIA
V100 GPU. The model’s training involves an Adam optimizer [35], a batch size of 512 samples, and a learning
rate of 0.001. The training process lasts 200 epochs.

5 EVALUATION
In this section, we evaluate RimSense’s technical performance in touch gesture recognition in an offline manner.
The collected data in this section are stored on a hard disk and processed offline by the software. We report
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Fig. 13. Timestep-level performance. (Zm: zoom; Sld: slide; L: left; M: mid; R: right)
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Fig. 14. Event-level performance. (Zm: zoom; Sld: slide; L: left; M: mid; R: right)

RimSense’s performance in terms of timestep-level gesture prediction accuracy, event-level gesture prediction
accuracy, gesture duration estimation error, and latency.

5.1 Data Collection
This study recruited 30 participants (15 females and 15 males). Most of the participants are either students or staff
members from our campus, with an average age of 27.6 years. Most subjects are between 18 and 35 years old,
with two exceptions - a 62-year-old female and a 65-year-old male. Among the 30 participants, seven do not wear
glasses daily. Each participant completed one or two data collection sessions depending on their own will, with
each session lasting approximately 15 minutes. Participants received a compensation of 25 HKD2 after completing
each data collection session. The experiments were conducted in a lab room where normal lab activities, such as
people walking and discussion, occurred during the experiments. Participants were allowed to move their bodies
and talk freely during the experiment. The data collection setup is similar to that of Figure 16.

Each data collection session begins with an introduction to the study, followed by a tutorial on how to perform
the eight target touch gestures: zoom-in, zoom-out, slide-left, slide-right, press, tap-left, tap-mid, and tap-right
(Figure 2). The participants are given time to learn and get familiar with the gestures. We divide a data collection
2Around 3.20 USD (1 HKD ≈ 0.13 USD).
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Fig. 15. Gesture duration estimation. (ZM: zoom; Sld: slide; L: left; M: mid; R: right)

Table 2. The latency of RimSense. (BG: background)

CFR feature extraction Real-time gesture recognition Total
4.02𝑚𝑠 13.69𝑚𝑠

17.71𝑚𝑠CFR calculation BG subtraction Timestep level Event level
3.57𝑚𝑠 0.45𝑚𝑠 13.60𝑚𝑠 0.09𝑚𝑠

session into four sub-sessions in which similar gestures are grouped together. The first sub-session contains
zoom-in and zoom-out, while the second sub-session contains slide-left and slide-right. The third sub-session
focuses solely on the press gesture, while the last sub-session includes tap-left, tap-mid, and tap-right. During
each sub-session, the participant wears the RimSense prototype and sits comfortably in front of a computer
screen. The computer screen displays a visual instruction video to guide the participant in performing each touch
gesture. For each gesture, the video first displays the gesture name and a suggested gesture speed, followed by
a three-second timer to let the participant complete the gesture in three seconds, and then the video proceeds
to the next gesture. The speed suggestion is either fast, regular, or slow, and participants themselves manage
the actual gesture speed. The speed suggestion is used to increase the variability of the dataset. Each gesture is
repeated nine times within each sub-session. This study has been approved by the Institutional Review Board
(IRB) of our institution3.

5.2 Gesture Recognition Accuracy
As discussed in Section 3.3, RimSense utilizes a two-stage approach to detect touch gestures. The first stage
involves predicting the gesture for each timestep, while the second stage involves predicting a gesture event by
analyzing a series of timestep-level predictions. In this section, we evaluate RimSense’s performance in recognizing
gestures at both these levels. To present our results, we utilize leave-one-subject-out (LOSO) validation.

5.2.1 Timestep-level Accuracy. To assess the timestep-level accuracy, we segment the data from each data
collection session into segments of 3-second duration and with a step size of 0.2 seconds. This is done to mimic
RimSense’s 5𝐻𝑧 output rate (discussed in Section 3.3.2). These segments are then fed into our model, and the
model’s predictions are compared with the ground truth.
Figure 13(a) illustrates the confusion matrix and the precision, recall, and F1-score for the predicted gesture.

The confusion matrix shows that there is some confusion among the tap gestures, which is expected given their
similarity. Nonetheless, the eight gestures are generally well classified. It is worth noting that all gestures have
misclassified samples that are assigned to the null class. This is understandable since it might be confusing at the
3Hong Kong University of Science and Technology HREP-2023-0198.
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start and end of each gesture, as shown in Figure 11. Figure 13(b) presents RimSense’s performance across all 30
subjects, with an average precision, recall, and F1-score of 0.92, 0.91, and 0.91, respectively.

5.2.2 Event-level Accuracy. We also present an evaluation of RimSense’s gesture recognition performance at the
event level. As described in Section 3.3.2, we employ an FSM-based algorithm that reports a gesture prediction
only once for a gesture event. Following the setup described in the previous section, we segment the data from
each data collection session into 3-second segments with a step size of 0.2 seconds to simulate real-time prediction.
We then apply the FSM algorithm to each session’s data to obtain the event-level predictions of that session. For
each targeted gesture G in the event-level evaluation, we define its true positive, false positive, and false negative
samples as follows.

• True positive (TP). The predicted gesture interval is overlapped with the true gesture interval, and the
predicted gesture is correct, i.e., gesture G.

• False positive (FP). There is a gesture prediction for gesture G but the ground truth shows there is no
gesture overlapped with the prediction, or there is a gesture event overlapped with the prediction but the
actual gesture is not gesture G.

• False negative (FN). The ground truth shows that there is a gesture G at a certain time period but there
is no predicted gesture that is overlapped with the ground truth gesture G, or there is a gesture event
overlapped with the ground truth, but the prediction is wrong.

It’s worth noting that at the event level, RimSense only outputs gestures. As a result, there is no true null
sample in this evaluation. Figure 14(a) shows the confusion matrix of each gesture. Figure 14(b) depicts the
performance of each subject. The average precision, recall, and F1 score among all subjects are 0.95, 0.95, and 0.95,
respectively. The event-level performance is significantly improved compared to the timestep-level results. This
is because the timestep-level predictions are aggregated to provide a single prediction at this level. As a result,
minor errors, such as those at the beginning and end of each sample, are tolerated. Notably, the performance of
some participants is worse than that of others, where the errors mainly come from the confusion among the
three tapping gestures. This is possibly because these participants tend to perform the three tapping gestures
with less spatial distinction.

5.3 Gesture Duration Estimation Error
In addition to recognizing gestures, RimSense estimates the duration of each gesture. In this section, we evaluate
the accuracy of RimSense’s gesture duration estimation. We calculate the start time, end time, and duration
estimation errors of all true positive samples defined in the previous section. Figure 15 shows the cumulative
distribution function (CDF) plots of these errors. Overall, the mean errors for start time, end time, and gesture
duration are 52.5𝑚𝑠 , 83.8𝑚𝑠 , and 109.1𝑚𝑠 , respectively. Notably, the 109.1𝑚𝑠 duration error is equivalent to an
11% percentage error relative to the actual gesture duration.

5.4 Latency
We also examine the latency of RimSense’s software system in this section. We report the average time consumed
by two of the three modules involved in gesture recognition, namely, CFR feature extraction (Section 3.2) and
real-time gesture recognition (Section 3.3). It is important to note that, in the current implementation, the software
runs on a laptop. Hence, the latency needs to be further assessed when the system is actually built on a wearable
device with limited computation resources in the future. We ran RimSense for five minutes, which resulted in
1500 gesture predictions, and computed the average execution time for each component. Table 2 presents the
result. In general, it takes 17.71𝑚𝑠 for RimSense to give a gesture prediction.
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Fig. 16. The setup for the user study.

6 USER STUDY
In addition to the offline performance evaluation, we conduct a user study to evaluate the usability of RimSense.
We implement a real-time version of RimSense and deploy two applications that users can interact with through
RimSense. We evaluate the real-time and real-world gesture recognition performance and most importantly,
we evaluate the usability of RimSense through user feedback. Note that different from real AR glasses where
the virtual content is projected to the glass, in this study, we simulate the projection through a combination of
normal glasses and a computer monitor. Therefore, when using the apps, a user needs to look at the monitor as a
simulation of the experience with real AR glasses.

6.1 App Design
We develop a photo album app and an ebook reader app to test out RimSense. In the photo album app, the user
can navigate photos that are stored in this app. The photo gallery is displayed with three photos in a row on
each page, and users can open one of the three photos with a short tap (<1𝑠). A tap-left opens the left photo, a
tap-mid opens the middle one, and a tap-right opens the right photo. Alternatively, the user can use a long tap
(>1𝑠) to give a like to a photo (a heart icon will show below the photo) or unlike a photo (the heart icon will
disappear). Once a photo is opened with a short tap, the user can zoom in or out the photo using the gestures
zoom-in and zoom-out, and the user can return to the gallery page with a press gesture. To navigate to the next or
previous page of the photo album, users can perform a slide-left or slide-right gesture. A long slide (>1𝑠) results
in navigating one page forward or backward, while a short slide (<1𝑠) results in navigating two pages.

The ebook reader app features two modes: gallery mode and reader mode. In gallery mode, users can access all
ebooks and select one to read in reader mode. The gallery mode here works similarly to that of the photo album
app, including a long or short slide gesture to turn one or two pages, a short tap gesture to open a book, and a
long tap gesture to give or cancel a like. Once a book is opened, the app enters reader mode where the content of
the book is shown on the app. In this mode, users can turn to the next page using a tap-right or slide-left gesture,
or turn to the previous page using a tap-left or slide-right gesture. Additionally, users can increase or decrease
the font size using a zoom-in or zoom-out gesture. Finally, a press gesture can be used to return to gallery mode.

Screenshots of the two apps are shown in Figure 17 and Figure 18, and all gesture instructions and explanations
are summarized in Table 3.

6.2 Study Procedure
14 participants are invited to participate in the user study, three of whom are female. The average age of the
participants is 25 years old. The experiment environment is consistent with that of Section 5. Following an

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 4, Article 191. Publication date: December 2023.



191:14 • Xie et al.

(a) (b)

Fig. 17. Screenshots of the photo album app. (a) The gallery page. (b) The photo page.

(a) (b)

Fig. 18. Screenshots of the ebook reader app. (a) The gallery page. (b) The reader page.

introduction to the study, participants are instructed on how to use the two apps described above, with specific
emphasis placed on the gesture instructions outlined in Table 3. Subjects were given the opportunity to practice
the gestures on the prototype to become familiar with the interaction method. The introduction and practice
phase typically lasted approximately five minutes. The setup for the user study is shown in Figure 16.

The experiment starts once the participant feels fully prepared. For each app, the participant is verbally asked
by the researcher to complete three tasks before they can navigate the app freely. The tasks are designed to
ensure the participant is engaged in the study and can use all of the gestures. An example task is: "Please turn to
page four and open the second photo on that page. Take a closer look at it and give it a like if you like the photo".
Each app navigation requires approximately five minutes to complete. Throughout the experiment, a camera was
used to record the subject’s face, providing ground truth data to evaluate RimSense’s performance in real app
usage.
Upon the completion of the experiment session, participants are asked to fill out the System Usability Scale

(SUS) questionnaire [16] to provide feedback on the usability of RimSense, as well as a customized questionnaire
to address other user concerns. Additionally, we conduct an exit interview with each participant to learn about
their user experience and subjective comments about RimSense. The exit interview specifically includes questions
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Table 3. The gesture instructions and explanations.
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about the participants’ overall impression of RimSense, perceived benefits and drawbacks, and suggestions for
future development of the system.

The deep learning model utilized in this user study is trained with data collected in the data collection sessions
discussed in Section 5.2, which occurred approximately one month prior to the user study. Notably, some
participants in the user study have also participated in data collection4, and for those individuals, their own LOSO
models are utilized. For the remaining participants, the model trained using all data in the dataset is employed.
Participants are encouraged to ask the researcher any questions they may have throughout the study, which lasts
approximately 20 minutes for each subject.

6.3 Gesture Recognition Accuracy
In this section, we present an evaluation of RimSense’s gesture recognition performance in real-world app usage,
which complements the previous evaluation in Section 5.2. While the previous evaluation provides a controlled
environment for testing where a single gesture is repeated multiple times and similar gestures are grouped
together (see Section 5.1), this evaluation aims to assess RimSense’s performance in a more naturalistic setting
where users perform gestures randomly. As discussed above, we use a camera to record the gesture ground
truth during the user study. We compare RimSense’s predictions with the ground truth and evaluate the gesture
recognition accuracy. The true-positive samples, the false-positive samples, and the false-negative samples are
defined in Section 5.2.2.
We have collected 1716 samples in total, among which the numbers of samples for each gesture are 219, 283,

407, 262, 256, 97, 84, and 103, respectively, and one participant contributes to around 120 samples. Figure 19(a)
depicts the confusion matrix of each gesture. The average precision, recall, and F1 score for the eight gestures
are 0.89, 0.88, and 0.88. Figure 19(b) shows the performance on each subject. The average precision, recall, and
F1-score among all the subjects are 0.88, 0.92, and 0.88, respectively.

Comparing this result to the result in Section 5.2.2, we see a 7% performance degradation in terms of average
F1 score, which we attribute to users being more focused on app interaction than on performing the gestures
correctly. We discuss potential solutions to this issue in Section 7, including model adaptation and few-shot
learning techniques that can be employed to customize the model for individual users and improve accuracy.

4In Section 6, the participants P1, P2, P3, P4, P5, P6, P7, P8, P9 are the same as participants P7, P6, P20, P19, P9, P12, P13, P11 and P14 in
Section 5
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Fig. 19. RimSense performance in the user study. (Zm: zoom;
Sld: slide; L: left; M: mid; R: right)
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Fig. 20. The questionnaire results (4 is the highest score)
.

6.4 User Experience Study
We use two questionnaires to collect the user’s feedback on their experience of using RimSense. One questionnaire
is the SUS questionnaire which is widely used to evaluate the system’s usability (Appendix A). The result of the
questionnaire can be converted to a score ranging from 0 to 100, representing the overall usability [16]. Apart
from the standard SUS questionnaire, we are also interested in other issues that are specific to the user experience
of RimSense. We ask the following questions in our second questionnaire. The design of these questions is based
on previous works [33, 63, 64, 69, 79].

1. Enjoyment. "I feel it is interesting to interact with apps using RimSense."
2. Accuracy. "I believe RimSense is accurate in reading my gesture input."
3. Efficiency. "I think RimSense is an efficient way to interact with apps."
4. Fatigue. "I don’t think using RimSense makes me tired."
5. Social concerns. "I don’t think using RimSense in public spaces would raise my social concern."
6. Distraction. "I don’t think RimSense is producing any noise or vibrations."
7. Vision blockage. "I don’t think the sensors on the glass blocked my vision when I was using RimSense."
All the above questions are answered by a 5-point scale score for their agreement with the above statements

where the lowest score means strongly disagree and the highest score means strongly agree. The 5-point scale is
used to make the second questionnaire consistent with the SUS questionnaire.

6.4.1 Questionnaire Results. The average scores of each question in the SUS questionnaire are shown in Fig-
ure 20(a). Following the score calculation method introduced in [30], we obtain the overall system usability (SU)
value of 84.00 ±10.09 out of 100. This result indicates the high usability of RimSense. Specifically, in the SUS
questionnaire, Q4 and Q10 are for learnability and the rest are for usability. By considering these two categories
separately, we obtain the learnability score of 93.3 (±8.98 and the usability score of 81.67 (±12.80). This result
implies that RimSense is generally easy to use and learn.

For the second questionnaire, the average score for each category is depicted in Figure 20(b). For the question of
enjoyment, 10 out of 14 participants gave the highest score in this category indicating the participants generally
feel RimSense is fun to use. For the accuracy category, while 9 participants agreed that the system is accurate, 4
participants gave a neutral score and 2 participants disagreed. This means that although the average accuracy
is high according to the evaluation above, the performance of RimSense is not perceived as good enough for
some participants. As the evaluation in Section 6.3 and users’ subjective feedback in Section 6.4.2 suggest, the
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reason might be that the accuracy of the slide gestures is not optimized. As discussed Section 7, future work
can leverage transfer learning and few-shot learning techniques to adapt the gesture recognition model to each
user for boosting performance. As for the question of efficiency, 13 out of 14 participants agreed that RimSense
is an efficient way to interact with the apps. We believe this should be the benefit of the direct manipulation
user experience enabled by RimSense. For the question of fatigue, 2 participants reported feeling fatigued after
using RimSense (strongly disagree or disagree) and 5 participants stayed neutral. This is probably because of
the nature of smart eyewear - a user needs to raise an arm in order to reach the eyeglass. It is also possible
that our designed apps require frequent input commands (turn pages). Therefore, future works and future app
designs based on RimSense should consider this and functionalities that require intense gesture input are not
recommended. As for the question of social concern, although most participants would feel comfortable using
RimSense in public, 2 participants disagreed. We believe this is an inherent problem of smart eyewear’s form
factor, and it may take some time for the public to fully accept this form of interaction. For the question of
distraction, all participants reported no noise or vibration (strongly agree or agree) produced by RimSense. This
result proves the effectiveness of our probe signal design discussed in Section 3.1. Regarding the question of
vision blockage, 3 participants reported that the sensors on the eyeglass block the vision (strongly disagree or
disagree), and 3 participants remained neutral on this question. This result indicates that some users may feel
that the sensor placement on the glass will influence their eyesight. We will discuss this issue in Section 7, and
future work can explore using advanced transparent PZT sensors [58, 59] or integrating the sensors into fashion
designs to ease the perceptibility of the sensors.

6.4.2 Subjective Feedback. In addition to the questionnaires, we ask the participants to provide comments about
RimSense. We summarize their comments as follows.

Enjoyment. Some participants explicitly commented on their excitement about using the system. "I felt excited
when using the eyewear. I think it is absolutely interesting and fun to play with." (P2). "This is a new way of interacting
with wearable devices. It is interesting and I have never seen it before. I would recommend my colleagues and friends
to try it out." (P7). "I think this interaction is new, novel, and I find it very interesting." (P10)

Reasonableness. Some participants acknowledged the usefulness and reasonableness of this design. "Opening
a photo by clicking on the corresponding location of the glass is really convenient. I think it is a reasonable design."
(P9). "I think it makes a lot of sense to interact with your eyewear like that. I would picture myself lying on my
couch watching TV, and switching channels by just touching my eyeglass without looking for my remote control
everywhere." (P1) ."The gestures are easy to understand and make sense to me. Therefore, I think it is easy for me to
learn all the gestures." (P14)

Intuitiveness. The participants felt that most input gestures are intuitive and easy to remember. "It is intuitive
to perform a zoom-in or zoom-out gesture on the glass and see the content on the screen is also zoomed in or out" (P8).
"It felt very smooth to turn pages by sliding on the glass." (P4). "I think the slide, tap and zoom gestures are quite
easy to remember because they are natural. (P7). However, the press gesture (which means a return) is not very
intuitive to some participants. "I always forgot a press gesture means a return." (P6) "Sliding is the standard way of
returning to the previous page in Android and iOS smartphones, so I think the press-to-return design is somehow
contrary to common practice." (P2).

Robustness. The participants generally felt RimSense is accurate and robust. "I am satisfied with the system’s
accuracy. Also, the robustness is good. I particularly tried gestures with different speeds, strengths and different
touching locations, and most gestures are accurately recognized." (P9). "I think the system is smooth to use, and almost
all my gestures are recognized correctly." (P7). "I’m satisfied with the general accuracy of the system, especially for
the tap gestures, they are very accurate." (P11). P14 also gave very similar feedback. However, some participants
raised concerns about the robustness of some gestures. "The recognition accuracy for the sliding gestures is not as
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good as the others." (P8). P4 also has similar comments: "Sometimes a slide-left gesture is recognized as tap-right, so
sometimes I was intended to turn to the previous page but the photo or book on the right is opened instead."
Latency. Two of the participants feel the latency of the system (currently 5𝐻𝑧 refresh rate) needs to be

improved. "There is a perceivable delay before the input gesture takes effect, so there is a gap between RimSense’s
refresh rate and the 90 or 120𝐻𝑧 refresh rate that we currently enjoy with modern smartphones." (P4) "I felt the
system is a little laggy to me if I’m going to use it daily." (P9).

Some participants also gave us suggestions about what they expect to see in the future generation of RimSense.
These comments could shed light on the future directions of this study.

Micro gestures. P1, P3, and P9 commented that they would like to see micro gestures to be enabled in the
future design. Specifically, P9 said: "The zoom gestures are large gestures in a sense that it takes me around one
second to finish. I would recommend changing it to a single-finger gesture that gently slides on the upper-right corner."

Finger tracking. P2 and P4 suggested that finger touch tracking on the rim would be a nice feature to have in
the future product. "In addition to touch gesture recognition on the rim, I would recommend finger tracking because
it would enable gestures with finer granularity." (P4). "Finger tracking would be a nice feature to have since it would
introduce gesture path as another dimension to a gesture in addition to gesture duration. For example, a full-slide
gesture that covers the entire upper edge of the glass and a half-slide gesture that goes from the upper-left or right
corner to the middle can be different gestures." (P2).

7 DISCUSSION
In this section, we discuss the limitations of RimSense and point out the future directions of this study.
Unintended touch. This study aims to detect and recognize touch gestures on the eyeglass rim. However,

sometimes users can touch the rim unintentionally. For example, users may touch the eyeglass to adjust the
eyeglass position, and this may lead to a false positive gesture prediction. This case is not considered in this study.
Future studies can consider collecting unintentional touch samples and labelling them as null samples. Also, data
augmentation techniques introduced in [73] can be used to increase the number of this kind of null samples. In
addition, a specially designed gesture (e.g., double tap) can serve as the keyword to initiate an interaction session,
where only gestures detected within this session would be recognized and others ignored.

Personalization. As discussed in the user study (Section 6), RimSense’s performance on some subjects is
not as good as the others. This can be solved by introducing a personalization approach where a user needs to
provide a few samples of gestures, and the samples are used to adapt the model to the user via transfer learning
[71]. This initialization step is also common in commercial products‘ gesture input systems [3]. Also, since we
only build one prototype in this study, leveraging personalization techniques can help to adapt the deep learning
model to new eyewear models with PZT sensors attached.
Form factor. The current implementation of RimSense relies on an audio interface card and a laptop to run

the software. Future research needs to focus on how to integrate the entire system into a single pair of eyeglasses,
which would introduce new implementation challenges because of the limited computing resources and power
constraints. This can potentially be solved by the recent research progress on TinyML [41]. Also, as we discuss in
Section 6, some users find it annoying to have two sensors attached to the glass blocking their eyesight. Therefore,
future implementation could consider adopting smaller or even transparent PZT sensors [58, 59] with a more
compatible shape and fashionable design to the eyeglasses to help the users ignore the existence of the sensors.
Additionally, considering VR headsets are the most popular form of smart eyewear, future research could explore
how RimSense can improve the interaction experience for VR headsets, say, making the exterior of the VR headset
interactable using the techniques behind RimSense.

Robustness. As discussed in Section 5.1 and Section 6.2, the majority of participants recruited in our evaluation
are young adults. However, it is also important to evaluate RimSense on other age groups, such as children and
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the elderly. Also, all the current evaluations are conducted in a lab setting where the participants are seated.
Future work should also consider the situation when the users are in motion.

Comparison with de facto method. RimSense serves as a proof-of-concept interaction design to showcase
the possibilities and potential of utilizing the eyeglass rim for interaction purposes. Future work should optimize
the hardware and software design and, most importantly, comprehensively compare the performance and
practicability with the de facto interaction method - using a touch panel on the temple front of the eyeglass.

8 RELATED WORK
In this section, we give an overview of the related work of this study. We group the related works into two
categories: eyewear interaction systems and PZT-based sensing systems.

8.1 Eyewear Interaction Systems
We separately discuss the surveyed works by the designed interfaces including the gaze-eyewear interface, the
face-eyewear interface, the head-eyewear interface, the hand-face interface, and the hand-eyewear interface.

8.1.1 Gaze-Eyewear Interface. Gaze gestures are suitable for eyewear control for the eye’s close proximity to the
eyeglass. Jalaliniya and Mardanbegi [31] propose to interact with scrolling content by detecting eye movement
patterns using an eye-tracking camera. Ahn and Lee [12] propose a text entry method for smart eyewear that
involves eye-tracking techniques and a touchpad. In [25, 37, 38, 47, 65], the authors propose to use eye expressions
as input gestures to interact with smart eyewear. One common issue for the above gaze-based interaction systems
is that most of the designs require an eye-facing camera which will raise privacy concerns. In addition, this
method requires complete visual attention of the user, impeding immersive experiences. Also, since these systems
require the user to adjust gaze direction in specific ways, using these systems may raise social concerns.

8.1.2 Face-Eyewear Interface. Researchers are also interested in developing interaction methods that use facial
expressions for input gestures. In [28, 46, 49, 60, 71], the authors propose to use facial actions (mostly the actions
around the eye area) for interacting with eyewear. In addition, Yuya et al. [29] sense silent speech so that users
can say key works silently to control the eyewear. Compared with the gaze-eyewear interface, using facial actions
for interaction does not require a camera. However, performing specific facial expressions in public may still
raise social concerns. Furthermore, extensive use of these facial actions for interaction might be exhausting.

8.1.3 Head-Eyewear Interface. Head motions are also explored to control smart eyewear. HeadTurn [53] proposes
to detect the head orientation as the input for eyewear. Authors in [75, 77] propose to use the eyewear-embedded
IMU to sense head gestures as the eyewear input. SmoothMoves [22] designs a target selection method powered
by IMU-measured head orientation patterns. Similar to gaze-eyewear and face-eyewear interaction, using head
gestures to control eyewear is not well-accepted by the public. Therefore, the head-eyewear interface faces the
challenge of social concerns. Also, the interference of unintended body motion might be another limitation of the
head-eyewear interface.

8.1.4 Hand-Face Interface. The facial area acts like a natural control pad for the eyewear. Lee et al. [39] propose
an eyewear system called Ithcy Nose that senses finger gestures on the nose. Papers [48, 69, 74] explore to detect
finger-to-face gestures as input vocabulary for eyewear. Compared with the gaze-eyewear and head-eyewear
interfaces, one advantage of the hand-face interface is its tangibility. However, since the hand-face interface
involves touching or even pinching facial skin, the social acceptability of this interface needs further study. Also,
there might be hygiene concerns regarding this interaction modality.

8.1.5 Hand-Eyewear Interface. Directly interacting with the eyewear itself is the de facto interaction method
for commercial eyewear products [2, 4, 7–10]. These products leverage a touch panel at the temple front of the
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eyeglass for receiving gesture input. In addition to these commercial products, the research community also
proposed new touch-based interaction methods for eyewear. FaceWidgets [66] proposes a panel of physical
controls located at the back side of the VR headset to enable tangible interactions. StretchAR [55] presents a
wearable stretch that is interactable with finger touching. Xie et al. [70] present an eyeglass prototype that can
recognize five finger-touching locations for interaction. Different from the above products and research works,
RimSense explores a new interaction space — the eyeglass rim — for interaction with smart glasses. In addition,
our user study shows that interacting on the rim is natural and intuitive. In addition to touch-based gestures,
mid-air gestures are also explored to facilitate eyewear interaction. Authors in [15, 17–19, 34, 42, 76] propose to
use cameras to recognize mid-air hand gestures. Despite the convenience and intuitiveness of the use of mid-air
gestures, the widely used camera of these systems may raise privacy and social concerns. Also, this modality
lacks tangibility compared with touch-based systems such as RimSense.

8.2 PZT-based Sensing Systems
A PZT sensor is a device that can transduce between the vibration signal and electrical signal. It is widely used
in civil engineering for structural health monitoring [24, 43, 50]. More recently, researchers started to design
human-centric sensing systems using PZT sensors. Stane [51] is a PZT sensor-enabled tactile input device.
Similarly, Fan et al. [23] develop a tactile surface for robots using PZT sensors for human-robot interaction. Ono
et al. [54] propose to make daily objects interactable by attaching a pair of PZT sensors. V-Speech [45] presents
an eyewear prototype with a PZT sensor attached to the nose pad for voice capturing. Kalantatian et al. [32]
embed a PZT sensor into a necklace to sense the user’s eating habits. In addition, there is a rich body of work
that uses PZT sensors to detect human vital signs such as respiration rate and heart rate [11, 13, 14, 44, 56, 78].

9 CONCLUSION
This paper introduces RimSense, a proof-of-concept approach for interacting with smart eyewear by making the
eyeglass rim interactive through piezoelectric (PZT) transducers. RimSense incorporates a frequency-buffered
chirp signal to ensure optimal sensing granularity and minimal impulse noise. Additionally, RimSense integrates
a timestep-level deep learning-based prediction model and an event-level FSM-based prediction algorithm,
facilitating the real-time recognition of gestures with varying durations. Our implemented prototype demonstrates
RimSense’s ability to recognize eight distinct touch gestures executed on the eyeglass rim, including zoom-in,
zoom-out, slide-left, slide-right, press, tap-left, tap-mid, and tap-right. The system undergoes comprehensive
evaluation involving 30 subjects, achieving an F1-score of 0.95 for gesture recognition and an 11% relative gesture
duration estimation error. A user study involving 14 subjects further validates RimSense’s good performance,
high usability, learnability and enjoyability. To the best of our knowledge, this study is the first to showcase the
feasibility of utilizing the eyeglass rim as a new interaction space for smart eyewear.
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A SYSTEM USABILITY SCALE QUESTIONNAIRE
The questions in the System Usability Scale (SUS) questionnaire [16] are listed below and each question is
answered using a 5-point scale ranging from strongly disagree to strongly agree.

1. I think that I would like to use this system frequently.
2. I found the system unnecessarily complex.
3. I thought the system was easy to use.
4. I think that I would need the support of a technical person to be able to use this system.
5. I found the various functions in this system were well integrated.
6. I thought there was too much inconsistency in this system.
7. I would imagine that most people would learn to use this system very quickly.
8. I found the system very cumbersome to use.
9. I felt very confident using the system.
10. I needed to learn a lot of things before I could get going with this system.
The SUS questionnaire can be interpreted numerically. A score ranging from 0 to 4 can be assigned to each

question. For questions 1, 3, 5, 7, and 9, the score is calculated as the scale position minus 1. For questions 2, 4, 6,
8, and 10, the score is calculated as 5 minus the scale position. Then the overall system usability (SU) is obtained
by summing up the scores of all questions and multiplying it by 2.5. The SU has a range of 0 to 100 where 100
represents the highest usability.
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