
Software-Defined Network Assimilation:
Bridging the Last Mile Towards Centralized Network

Configuration Management with NAssim
Huangxun Chen1, Yukai Miao2, Li Chen3, Haifeng Sun4, Hong Xu5, Libin Liu6,

Gong Zhang1, Wei Wang7,8
1Huawei Theory Lab, 2University of New South Wales, 3Zhongguancun Laboratory,

4Beijing University of Posts and Telecommunications, 5Chinese University of Hong Kong,
6Shandong Computer Science Center (National Supercomputer Center in Jinan),

7Hong Kong University of Science and Technology (Guangzhou), 8Hong Kong University of Science and Technology
chen.huangxun@huawei.com,yukai.miao@unsw.edu.au,lichen@zgclab.edu.cn,hfsun@bupt.edu.cn

hongxu@cuhk.edu.hk,liu.libin@outlook.com,nicholas.zhang@huawei.com,weiwcs@ust.hk

ABSTRACT
On-boarding new devices into an existing SDN network is a pain

for network operations (NetOps) teams, because much expert effort
is required to bridge the gap between the configuration models of
the new devices and the unified data model in the SDN controller.
In this work, we present an assistant framework NAssim, to help
NetOps accelerate the process of assimilating a new device into a
SDN network. Our solution features a unified parser framework
to parse diverse device user manuals into preliminary configura-
tion models, a rigorous validator that confirm the correctness of
the models via formal syntax analysis, model hierarchy validation
and empirical data validation, and a deep-learning-based mapping
algorithm that uses state-of-the-art neural language processing
techniques to produce human-comprehensible recommended map-
ping between the validated configuration model and the one in
the SDN controller. In all, NAssim liberates the NetOps from most
tedious tasks by learning directly from devices'manuals to produce
data models which are comprehensible by both the SDN controller
and human experts. Our evaluation shows, NAssim can accelerate
the assimilation process by 9.1x. In this process, we also identify
and correct 243 errors in four mainstream vendors’ device manuals,
and release a validated and expert-curated dataset of parsed manual
corpus for future research.

CCS CONCEPTS
• Networks → Network manageability; Network manage-

ment; • Computing methodologies → Machine learning;

The work was done when Yukai Miao was an intern at Huawei.
Corresponding author: Li Chen and Haifeng Sun.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCOMM ’22, August 22-26, 2022, Amsterdam, Netherlands
© 2022 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-9420-8/22/08. . . $15.00
https://doi.org/10.1145/3544216.3544244

KEYWORDS
Multi-Vendor Networks, Network Configuration Management,

Software-Defined Networks

ACM Reference Format:
Huangxun Chen1, Yukai Miao2, Li Chen3, Haifeng Sun4, Hong Xu5, Libin
Liu6, Gong Zhang1, Wei Wang7,8. 2022. Software-Defined Network Assimi-
lation: Bridging the Last Mile Towards Centralized Network Configuration
Management with NAssim. In SIGCOMM ’22: SIGCOMM 2022, August 22-
26, 2022, Amsterdam, Netherlands. ACM, New York, NY, USA, 17 pages.
https://doi.org/10.1145/3544216.3544244

1 INTRODUCTION
Software-defined networking (SDN) is the prevalent approach

to manage modern enterprise and cloud networks [39, 52]. The
main characteristic of the SDN is centralized control over all net-
work devices, physical and virtual. This is easy to achieve for a
newly constructed network with devices that can run software
agents [2, 8] accessible to a SDN controller. However, for a network
with many legacy devices, current SDN controllers must use their
command line interfaces (CLI) to gain access. Enabling CLI-based
configuration for SDN controllers requires significant effort from
network operations (NetOps) experts, who have to understand the
device’s user manuals, find correct commands, draft and validate
configuration templates, and provide rules that map parameters
from the SDN’s configuration database to the templates. Apart from
legacy devices, on-boarding new vendors and introducing new de-
vices from them is also painstaking. Due to the lack of standardized
interface for configuration and operation, NetOps teams need to
make significant effort in adapting new devices to existing SDN
controllers by either developing software agents, or, if the device
has only CLI access, going through the same process above.
We define the process of introducing heterogeneous network

devices (e.g. legacy devices and devices from a new vendor) into
a centrally controlled, existing SDN network as Software-defined
Network Assimilation (SNA). We find that current SNA approaches
requires significant human effort and are error-prone. Thus, we
seek to take the SDN through the last mile towards centralized
configuration management across all devices, legacy and new.
The key problem in SNA is the mismatch between two data

models: the heterogeneous configuration model of the device, and

https://doi.org/10.1145/3544216.3544244
https://doi.org/10.1145/3544216.3544244

SIGCOMM ’22, August 22-26, 2022, Amsterdam, Netherlands H. Chen et al.

the unified device model (UDM) [16, 49] in the centralized SDN
controller. Our insight to tackle this problem is to learn from the
current SNA practices of NetOps: to assimilate a new device, Ne-
tOps engineers first prepare command templates by reading and
understanding the user manual of the device, and then link the
parameters in the command templates to their counterparts in the
UDM. To accelerate the current practice, our proposal, NAssim,
also has two phases: the Vendor-specific Device Model (VDM) con-
struction phase, and the VDM-UDM mapping phase. In the first
phase, NAssim helps NetOps engineers to extract and validate the
VDM from its manual; and in the second, NAssim helps to map the
parameters in the VDM to UDM.

This involves solving three challenges:
• Manual Format Heterogeneity: Devices’ user manuals
are the most reliable sources to extract their configuration
models, especially for legacy devices which have CLI only.
However, the manuals are organized and formatted uniquely
for different vendors. Thus, we need a unified parsing frame-
work to extract configuration models from manuals.

• Errors & Ambiguity in Manuals: Despite being the single
source of truth, the manuals contain many errors and ambi-
guities, thus only parsing from manuals is not enough. To
validate and correct parsed models, we must seek an efficient
way to identify errors and clarify the ambiguities.

• Heterogeneity between Configuration Models: Config-
uration data models are different for different vendors. To
map them to an UDM is challenging, and, we believe, must
involve using natural language processing (NLP) techniques
to learn from the natural language descriptions of the CLI
commands in user manuals.

We build NAssim as an assistant framework for NetOps engi-
neers to address the above challenges. NAssim consists of three
core components: Parser Framework, Validator, and Mapper. The
workflow is as follows: to assimilate a new device, first NetOps
engineers specify a parser for its user manual using the Parser
Framework, and run the parser to extract a preliminary VDM from
the manual; then, we use the Validator to confirm the correctness
of the model via formal analysis, model hierarchy validation, and
empirical data validation; any errors and ambiguity in the manual
are caught in the Validator, and are summarized and reported to
engineers for corrections; finally, between the VDM and the SDN
controller’s UDM, the Mapper uses a novel NLP algorithm to pro-
duce a recommended mapping which is human-comprehensible.
For each relationship in the mapping, if NetOps engineers find
it questionable, NAssim can also present a list of most relevant
recommendations with rich semantic information parsed from the
manual, so that they no longer need to search through the manuals
themselves.

We enable this workflow with the following contributions:
(1) We build a parser framework to enable customized parsing

of user manuals of network devices. With a comprehensive
study of commonalities and diversity of popular vendors’
manuals, we design a vendor-independent device model cor-
pus format which is expressive, interpretable, and extendable.
Using this format, we enable the Test-Driven Development
of parsers, which enhances the reliability of device manual

parsing. In our experience of parsing the manuals from main-
stream vendors, it requires ∼50 lines of codes per vendor.

(2) Since the parsed results still contain typos or other human
errors in the manuals, we design a rigorous and human-
comprehensible validation framework for the parsed results,
which has three stages:
(a) Formal syntax validation: We transform all parsed com-
mand styling conventions into Backus Normal Form and
build corresponding syntax parsers to verify the confor-
mance of all parsed commands.

(b) Model hierarchy validation: To validate hierarchy among
commands and identify missing ones, we construct a graph
model for each CLI instance, and design a state-machine-
based template matching algorithm for validation.

(c) Validation with empirical data: Finally, as an end-to-end
testing scheme, we use configurations from running de-
vices to check the correctness of the parsed results. We
also present a scheme to generate abundant empirical data,
using the aforementioned command graph model to test
against real devices.

In our evaluation with 613 real configuration files, we achieve
100% matching accuracy between configuration snippets and
the validated model. NAssim’s Validator also identifies 184
syntactic errors and 59 ambiguities in four mainstream ven-
dors’ manuals.

(3) We release a parsed, validated, and expert-curated dataset
of device manual corpus of different vendors1 for future
research in the SDN and network management.

(4) We employ state-of-the-art contextual learning NLP model,
BERT, and augment it to create a domain-adapted version for
our usecase, NetBERT. We use NetBERT to map any parsed
configuration model to the UDM. NetBERT achieves 89% and
70% top 10 recall for mapping device models of Huawei and
Nokia to a given UDM respectively. The output of NetBERT
is a mapping between parameters of different models, which
is comprehensible and editable by NetOps experts.

In what follows, we overview the background in § 2, and present
the overall design of NAssim in § 3. We then describe its three
components in details in § 4, § 5, &§ 6. We evaluate NAssim in § 7,
and discuss related work in § 9.
Caveat: To the best of our knowledge, this is the first study of
network configuration manuals, despite its importance in network
management and operations. We find that the manuals, as human-
written documents, contain non-negligible errors which, if followed
blindly, can not only impede the SNA process, but also lead to pro-
duction issues. Correcting these errors is not trivial, and need judge-
ment and trial-and-error experimentation by human experts. This
is also true for the VDM-UDM mapping task. Therefore, we believe
SNA cannot be easily automated, and we design NAssim as an assis-
tant SNA framework for NetOps engineers. NAssim provides tools
and recommendations to NetOps engineers to accelerate the cur-
rent SNA process by automating the most tedious tasks, and is not
an end-to-end system that directly extract and map heterogeneous
VDM to UDM.

1https://github.com/AmyWorkspace/nassim

https://github.com/AmyWorkspace/nassim

Software-Defined Network Assimilation SIGCOMM ’22, August 22-26, 2022, Amsterdam, Netherlands

Disclaimer: This work does not raise any ethical issues.

2 BACKGROUND AND MOTIVATION
In this section, we first highlight the need for SNA in modern

SDN networks (§2.1). Next, we summarize the main challenges for
SNA (§2.2). Finally, we motivate and explain the design decisions
of NAssim (§2.3).

2.1 SDN & Need for SNA
Large enterprises procure and operate network devices from

multiple vendors. They also continuously introduce new device
models and new vendors into their network. This multi-vendor
nature makes the network management tasks complex [7, 9, 20, 22,
33, 33, 34, 40, 42, 44]. To ease the difficulty of managing a multi-
vendor network, the NetOps community has been relying on SDN,
which presents a logically centralized control plane for all network
devices. At the core of SDN, the key data structure is a unified
device model (UDM) which normalizes the configuration model of
devices from all vendors. Combined with the relevant tools [2, 8],
the SDN controllers can configure multi-vendor devices as if they
are the same. NetOps of large enterprises and cloud providers have
put much effort into building UDMs[10, 16, 49].
While UDM makes the management of existing devices easy, it

also makes on-boarding new vendors and introducing devices with
differing configuration models difficult. Since each SDN network
may have a different UDM, vendors usually do not have a stan-
dardized north-bound interface for configuration and operations,
despite continuous efforts in this area [8, 10, 16, 49]. This situation
is worse for legacy devices with only CLIs. For these devices, SDN
controller need to send CLI commands via Telnet connections to
implement high-level operational intents. Constructing a valid CLI
commands also requires the SDN controller to "understand" the
CLI syntax, as well as having a mapping between the UDM and the
device’s own configuration model.
To the best of our knowledge, currently SNA rely solely on Ne-

tOps engineers, who handcraft models for new and legacy devices
based on their user manuals, and map the model to UDM. The
entire process requires significant human effort and is error-prone.
Thus, we seek a system that can accelerate SNA by learning the
device configuration model from the manuals with minimal expert
effort, and can map the learned model to the UDM in a human-
comprehensible manner.

2.2 Challenges of SNA
To this end, we outline three key challenges of SNA.

Manual Format Heterogeneity: Devices’ user manuals is usu-
ally the most trustworthy sources to obtain configuration models,
especially for legacy devices with only CLI access. There is no
standardization for manuals, and vendors organize their user man-
uals in diverse ways, as shown in the manuals of mainstream ven-
dors [4, 11, 13, 15] and the page snapshots in Appendix A. Despite
diverse styles, they serve the same purpose: show how to configure
the devices via CLI. Thus, the user manuals should cover the CLI
commands supported by the devices and the commands' function
descriptions, parent/working views, parameter descriptions and
representative examples. However, the same concept may have

different names in each manual e.g., all manuals specify the par-
ent views of CLI commands (i.e., the working view under which
the commands can be accepted and executed), but may put them
under 'Views', 'Command Modes', 'Context' and 'View' sections re-
spectively. We survey and summarize five major attributes of most
command reference manuals, and their corresponding Cascading
Style Sheet (CSS) class names in the online version of manuals for
four mainstream vendors in Table 1.

Using the CSS class names seems a trivial way to extract informa-
tion from online manuals, due to the limited number of mainstream
vendors. On the contrary, our study shows that, even for the same
attribute, its CSS class namewithin the same vendor can be inconsis-
tent. Take the Cisco’s online manual as an example. In most pages,
it stylizes the CLI commands with 'pCE_CmdEnv' class, while some
pages use 'pCENB_CmdEnv_NoBold'. To distinguish place-holder
parameters and keywords in CLIs, different pages in one manual
may use one class from candidates including 'cKeyword', 'cBold'
and 'cCN_CmdName'. We suspect, because of the sheer volume of
manual pages (10k+ CLIs permanual) for a single device, themanual
is written over a long period of time, and the styling and format-
ting guidelines change over time. The class names are crucial for
parsing completeness, otherwise the parsed corpus miss important
information in the manuals. However, it is time-consuming, if not
impossible, to collect all variants.
Errors & Ambiguity in Manuals:We find that manuals contain
errors and ambiguities, and blindly following the manual can im-
pede SNA and even cause production issues. For example, we find
an ambiguous CLI command template in a Cisco manual2:
neighbor { <ip-addr> | <ip-prefix/length> }

[remote-as { <as-num> [<.as-num>] |
route-map <name> }

For the unpaired left bracket before the remote-as symbol, there
are multiple potential valid options: removing the left bracket,
adding a right bracket after remote-as symbol, adding a right
bracket at the end of the CLI; choosing which requires judgement
from experts. However, these problems are hard to catch by human
eyes, thus it is impractical for NetOps teams to audit the manuals
from first page to the last to identify all problems.
Heterogeneity between Configuration Models: Configuration
models are different for each vendor, and this is intentional: the
configuration language is designed by each vendor to be visibly dif-
ferent than the competitors', and the syntax is also heavily protected
by patents [5].
For the same concept or intent, different vendors use different

wordings and syntaxes. Table 2 shows the comparison for the VLAN
and spanning tree commands for Cisco, Huawei, and Juniper. Each
line in the table shows the command for the same intent in each
vendor. We can see that even for simple tasks the configuration
commands are significantly different. Thus, matching these diverse
configuration models to UDM is challenging.

2.3 Motivating NAssim’s Design Decisions
We design NAssim to tackle the three challenges of SNA. In this

section we overview NAssim’s design decisions.

2https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus5500/sw/
command/reference/unicast/n5500-ucast-cr/n5500-bgp_cmds_n.html

https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus5500/sw/command/reference/unicast/n5500-ucast-cr/n5500-bgp_cmds_n.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus5500/sw/command/reference/unicast/n5500-ucast-cr/n5500-bgp_cmds_n.html

SIGCOMM ’22, August 22-26, 2022, Amsterdam, Netherlands H. Chen et al.

Attribute
Vendor Huawei Cisco Nokia H3C

CLIs <class="sectiontitle">Format <class="pCE_CmdEnv"> <class="SyntaxHeader">Syntax <class="Command">Syntax
FuncDef <class="sectiontitle">Function <class="pB1_Body1> <class="DescriptionHeader">Description <class="Command">Description

ParentViews <class="sectiontitle">Views <class=pCRCM_CmdRefCmdModes>
Command Modes <class="ContextHeader">Context <class="Command">View

ParaDef <class="sectiontitle">Parameters <class="pCRSD_CmdRefSynDesc">
Syntax Description <class="ParametersHeader">Parameters <class="Command">Parameters

Examples <class="sectiontitle">Examples <class="pCRE_CmdRefExample">
Examples / <class="Command">Examples

Table 1: Diversity of Device User Manuals: The 'CLIs' field denotes the formal syntax of CLI commands, which are command templates with
place-holder parameters and special characters to specify selection or optional branches. The 'ParaDef' field contains the implication and
value range of place-holder parameters. The 'FuncDef' field describes the functionality of the complete CLI. The 'ParentViews' field indicates
the parent/working views of CLIs, i.e., one CLI may have multiple viable working views. The 'Examples' field shows examples of common
snippets, e.g., entering a parent view and issuing an instantiated CLI.

Intent Cisco Huawei Juniper
check vlan show vlan [vlanid] display vlan [vlanid] show vlan-id/vlans [vlanid]/[vlanname]

add/delete vlan vlan [vlanid]/no vlan [vlanid] vlan branch [vlanid]/undo vlan branch [vlanid] set vlan-id [vlanid]/delete vlan-id [vlanid]
configure spanning tree root bridge spanning tree vlan [vlanid] root primary stp instance [vlanid] root primary spanning-tree vlan-id [vlanid] root primary

Table 2: Configuration syntax comparisons across Cisco, Huawei, and Juniper

To handle heterogeneity in multi-vendor manuals, we survey
and study the online version of the manuals, and design a vendor-
independent corpus format, which can consolidate diverse manual
styles. Since the number of vendors is few (usually less than 10 for
a typical Invitation for Bidding of network infrastructure) and each
vendor’s manual formatting is roughly the same for all their devices,
we believe the human effort in building a vendor-specific parser is
acceptable. Therefore NAssim’s Parser Framework focuses on the
development process, and adopts Test-Driven Development (TDD)
methodology. For each vendor, the Parser Framework first gener-
ates tests based on the type restrictions in the vendor-independent
corpus format. The NetOps teams can then compose basic parsing
components and configure CSS class names to build a customized
parser. NAssim’s TDD utilities generates test reports for each ver-
sion of the parser, which guides the developer to improve the parser.
In our experience of parsing mainstream vendors, this human-in-
the-loop workflow both accelerates the SNA process and improves
the quality of the parsed corpus.

To tackle the second challenge of errors and ambiguity in parsed
corpus, we perform validation on three levels: command-level, inter-
command-level, and snippet-level. For command-level correctness,
we adopt formal syntax validation techniques, and verify whether
the parsed command follows the syntax of the manual. For inter-
command correctness, we build graph models for commands, and
design a state-machine-based matching algorithm to discover and
validate hierarchical relationship between commands. For snippet-
level correctness, our innovation is to include configuration files/s-
nippets from running devices to validate extracted models, because
the only way to ensure operational correctness is to run the exact
commands on the actual device. We use two data source for valida-
tion: 1) collected configuration files/snippets from running devices;
2) for commands not used by any running devices, we generate
configuration snippets from the graph model of commands, and
test them on real devices via CLI.
For the last challenge, to map extracted model to UDM, NAs-

sim’s innovation is two-fold: 1) we choose to perform fine-grained

parameter-level mapping, instead of command-level or snippet-
level mapping; doing this also results in a human-comprehensible
output of parameter-to-parameter mapping between VDM and
UDM, which allows NetOps experts to directly understand and
modify; 2) we employ recent NLP advances to generate context en-
coding of each parameter using all relevant semantic information,
and map them using a similarity measure. The similarity-based
approach can save valuable time for NetOps experts when they
find errors in the mapping, because NAssim can provide a list of
most relevant parameters along with their rich semantic informa-
tion parsed from manuals, so that experts no longer need to search
through the entire user manual for such information.

3 NASSIM OVERVIEW
NAssim helps NetOps engineers in two main phases of SNA:

VDM construction phase and VDM-UDM mapping phase. In these
phases, we use NAssim’s three core components as shown in Fig-
ure 1.

Figure 1: NAssim Overview.

3.1 VDM Construction Phase
In the VDM construction phase, NAssim aims to construct a

refined and validated native device model based on its user man-
ual. We start by describing the data structure of VDM. Then we
describe the key enablers of VDM construction: Parser Framework
and Validator.

Software-Defined Network Assimilation SIGCOMM ’22, August 22-26, 2022, Amsterdam, Netherlands

VDM Data Structure:We design a semantics-enhanced tree struc-
ture to represent the native device model. Nodes of tree are CLI
command templates with placeholder parameters, e.g., node 'peer
<ipv4-address> group <group-name>'. Edges of tree represent
configuration hierarchy, e.g., edge from node 'bgp <as-number>' to
node 'peer <ipv4-address> group <group-name>' denotes the
latter CLI command works under the sub-view enabled by the
former. Each node are linked to its relevant semantic corpus ex-
tracted from user manual, e.g., node 'peer <ipv4-address> group
<group -name>'is associated with corpus shown in Figure 3. The
entire tree describes the configuration model of the device, includ-
ing the CLI command set supported, the command hierarchy and
the semantics of commands.
Parser Framework:We develop a parsing framework to address
heterogeneous formatting of semantic descriptions of multi-vendor
CLI commands and cast them into a vendor-independent format.
The format, shown in Figure 3 and Table 3, acts as an unified con-
tainer to normalize the vendor diversity on manual formats. NetOps
engineers can build customized vendor-specific parsers using this
framework. The output of a parser is the preliminary VDM.
Validator: Validator addresses the manual ambiguity. It identifies
flaws in the preliminary VDM, and generates the validated VDM.
Validator examines three aspects of the preliminary VDM to en-
force rigorous validation: 1) formal syntax validation to identify
ambiguous CLI template, 2) CLI hierarchy derivation and validation,
and 3) validation against empirically-verified configuration files
from running devices. The output is a validated VDM.

3.2 VDM-UDMMapping Phase
In this phase, NAssim aims to identify parameter-level relation-

ship between VDM and UDM.
UDMData Structure: UDM is often stored as a tree hierarchy [16].
Nodes of the UDM tree denote configuration attributes, such as
IP address of a interface, name of an ACL policy and etc. An at-
tribute may be configured by a specific CLI command parameter
in individual VDM, but the attribute and the equivalent parameter
can have different names. Sub-trees generally denote a group of
relevant attributes, e.g., attributes for a specific network protocol.
In the common practice for managing multi-vendor network, UDM
covers the common functionalities across all the devices, which
is also the intersection across VDMs of multiple vendors. In this
work, we assume the UDM is given, and we leave augmenting
UDM by building CLI models for proprietary CLI commands of spe-
cific vendors as future work. NetOps engineers who construct the
UDM usually annotate the UDM with brief context for attributes
to facilitate future review and extension [16].
Mapper:Mapper aims to address the model heterogeneity. Even
for NetOps experts, the VDM-UDM mapping is tedious and error-
prone due to the considerable size of both models. As shown in
Table 4, both Huawei and Nokia VDMs contain >104 nodes. Mapper
exploits the semantic context attached with both VDM and UDM,
and then leverages recent NLP advances in context encoding and
similarity measurement to realize VDM-UDM matching. The out-
put of Mapper is the most potential matched CLIs/parameters with
interpret-able semantics for each attribute on the UDM. We design

the output of Mapper to be human-comprehensible: for each pa-
rameter in a CLI command, Mapper outputs a list of recommended,
most related attributes in UDM. NetOps engineers can directly
work on the output with their domain knowledge to further con-
firm the VDM-UDM mapping, and, if the Top-1 recommendation
is wrong, they can modify the mapping results. We also collect
the expert-corrected mapping results, and we use them as labelled
training/testing sets to continuously improve Mapper’s NLP models
for semantic context encoding and matching, which benefits future
VDM-UDM mapping procedures.

In the following sections, we elaborate on the three core compo-
nents of NAssim.

4 NASSIM PARSER FRAMEWORK
Manual parsing is the first step in SNA. The main goal of our

Parser Framework is to extract all essential VDM-relevant informa-
tion from the manuals, and meanwhile normalize diverse manual
styles to a unified format to facilitate vendor-agnostic processing
in the subsequent steps. To achieve this goal, we first design a uni-
fied format with thorough consideration on expressiveness, inter-
pretability and extendibility. Then, we adopt the TDD methodology
to ensure the quality and reliability of the parsing.
Vendor-independent VDMCorpus Format: Following our sum-
maries in Table 1, we define a JSON (JavaScript Object Notation)
format to contain the major configuration information. Figure 3
show a sample corpus generated by our parsing framework. The
vendor-independent format is organized in dictionary format using
attributes in Table 1 as keys. We restrict the type of each fields
as shown in Table 3. NAssim’s vendor-independent parsed format
captures the only commonality of manuals from different vendors,
and the it is easy to expend additional information to the JSON.
The human-readability of this format also makes it easy for both
the NetOps experts and the downstream NLP algorithms.

Keys Type Restriction
CLIs a list of string (non-empty list)

FuncDef string
ParentViews a list of string (non-empty list)
ParaDef a list of dict (Keys:"Paras" and "Info")
Examples a list of list

Table 3: Format Definition of Vendor-Independent Corpus (JSON)

Test-Driven Parser Development: As shown in the § 2.2, there is
no trivial way to parse the online version of manuals. To guarantee
completeness of parsing, NAssim’s parsing framework adopts the
Test-Driven Development [29] principle to specify a workflow for
building parsers.
The architecture of our parsing framework is shown in Fig-

ure 2. Parser acts as the base parser class, inherited by its sub-
classes Parser_<vendor>. In principle, we only need to implement
Parser_<vendor> for each vendor once. This framework makes it
convenient to accommodate a consolidated and extensible testing
scheme into the base parser class to benefit its all sub-classes. We
list the tests in Appendix B.

SIGCOMM ’22, August 22-26, 2022, Amsterdam, Netherlands H. Chen et al.

Figure 2: Detailed workflow of Parser Framework and Validator in VDM construction phase.

Figure 3: A sample of parsed VDM corpus.

The workflow to support a new vendor/model in our parsing
framework is as follows:

(0) (optional) We augment the base Table 3 with addition type
constraints for this vendor; an automated procedure then
generates a set of tests;

(1) We sample a batch of manual pages to develop a prelimi-
nary version of Parser_<newvendor>, which inherits the
base Parser class and implements the specific parsing()
method;

(2) We call the validating() method implemented in the base
Parser to verify the completeness of parsed corpus using the
generated tests, producing a summary report for violations.

(3) We follow the violations in summary reports to amend the
parsing logic if necessary.

We iterate Step 2&3 until the parsed corpora pass all the tests.
The reports has two parts: 1) summary of key attributes, which
lists all corpus with problematic/empty 'CLIs' fields, and relevant
external links to the original manual pages; 2) status of corpus,
which lists all problematic fields of each corpus. The developer can
sample most problematic corpus/pages to improve the parser.
Since manual parsing is situated at the very upstream of the

SDN assimilation, the correctness of parsed corpora are crucial for
downstream tasks. The reliability of the TDD-based human-in-the-
loop methodology makes it a good choice for our scenario to speed
up improving the quality of the parsed corpora in an interpretable
way.

5 NASSIM VALIDATOR
In the Parser Framework, we introduce the TDD principle to

greatly reduce the information loss due to careless parsing. How-
ever, user manuals are human-written documents, and it is in-
evitable for them to havemistakes and typos. Thesemis-information
in original user manuals always penetrates NAssim’s Parser Frame-
work. In order to mitigate their negative impacts on downstream
tasks, we design a rigorous validation scheme as shown in Figure 2,
including formal syntax validation for CLI commands (i.e., the
'CLIs' field in Figure 3), configuration model hierarchy derivation
and validation, and validation with empirical data.

5.1 Formal Syntax Validation
The 'CLIs' field is particularly sensitive to mis-information, be-

cause a CLI command with a wrong format can not be accepted by
the network device. However, as shown in § 2.2, CLI commands in
manuals can contain syntactic errors, and cannot be fully trusted.
This motivates us to design a rigorous validation method to system-
atically audit CLI commands in parsed corpora, so that the experts
can intervene in more targeted and efficient way.

The preambles of user manuals provide conventions to illustrate
the syntax of their 'CLIs' fields. For example, most manuals use
curly braces { } to indicate selected branches, and brackets [] to
indicate optional branches 3, as shown in Figure 4. We express these
command conventions/syntax into their equivalent Backus Normal

3https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus5500/sw/
command/reference/unicast/n5500-ucast-cr/n5500-ucast-preface.html

https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus5500/sw/command/reference/unicast/n5500-ucast-cr/n5500-ucast-preface.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus5500/sw/command/reference/unicast/n5500-ucast-cr/n5500-ucast-preface.html

Software-Defined Network Assimilation SIGCOMM ’22, August 22-26, 2022, Amsterdam, Netherlands

Figure 4: Command convention of Cisco manuals.

Figure 5: Code snippet for syntax parser generation.

Form (BNF) [43], and then transform them into CLI command syn-
tax parsers by leveraging parser generator tools like pyparsing [18]
or ANTLR [1]. Figure 5 shows a pyparsing snippet to generate a
syntax parser complying to command conventions shown in Fig-
ure 4. To validate against formal syntax, we can call the syntax
parser to parse the 'CLIs' field of corpus in automated way, i.e.,
check whether they conform to the formal syntax. We record all
parsing failure cases to quickly identify problematic CLIs fields in
the preliminary VDM corpus. Then the NetOps experts can conduct
targeted interventions to correct them so as to improve the VDM
corpus credibility.

5.2 Model Hierarchy Derivation and Validation
CLI model hierarchy refers to the relationship between individual

CLI commands, i.e., each command has a viable working view, i.e.,
parent view enabled by its parent CLI command. Configuration
models of most vendors follows tree-based hierarchy, but the tree
is usually implicit in manuals—only Nokia’s manuals specify their
hierarchy along with individual CLIs syntax/semantic description.
Some devices have special CLI commands to display their model
hierarchy on the terminal, but only command syntax is shown
without explicit linking to their semantic descriptions.

We find a reliable way to derive model hierarchy accompanied
with semantic context by fully exploiting 'Examples' fields in VDM
corpus. Revisiting the structure of corpus shown in Figure 3, most
fields centred around the 'CLIs' field to provide detailed semantic
description. However, the 'Examples' field demonstrates an instan-
tiated version of current 'CLIs' field in a configuration snippet,
implicitly bridging the relationship between the current CLI and
its parent CLI in the instantiated cases. Therefore, the basic idea
of our hierarchy derivation scheme is as follows: take Figure 3 as
the example, for a corpus, we first identify the corresponding CLI
instance in 'Examples' fields, i.e., peer 10.1.1.1 group test.
Then we track back to find the parent CLI instance based on the
prefix indentation, i.e., bgp 100. Finally, we search within all cor-
pus to find a 'CLIs' field matching with CLI instance bgp 100, i.e.,
bgp <as-number> in this case. Combined with 'BGP view' indi-
cated in 'ParentView' field, it follows that the CLI command bgp
<as-number> enters the 'BGP view'. Other 'CLIs' with the same

Figure 6: Toy example: match a CLI instance with the graph model
of a CLI template.

parent view can directly reuse the previous derivation, or they can
derive based on their own 'Examples' fields for majority voting.
CLIGraphModels: Enabling the above hierarchy derivation scheme
(the first and third step) requires implementing a basic function: de-
termine whether a CLI instance matches a CLI command template,
i.e., the contents in 'CLIs' fields. We design a state-machine-based
template matching algorithm for this task. We elaborate the main
idea with a toy example. Given a CLI template as follows:
filter-policy { <acl-number>

| ip-prefix <ip-prefix-name>
| acl-name <acl-name> } { import | export }

To check whether it can be instantiated as a specific CLI instance,
e.g., filter-policy acl-name acl1 export, we first construct
the CLI graph model as shown in Figure 6. A CLI graph model
(CGM) is a finite state machine with a single root and a single
terminal. Then, we search paths from root node in breadth-first
manner to match the tokens in CLI instance. Keyword nodes (i.e.,
solid circles in Figure 6) in the graph require exact text matching,
while parameter nodes (i.e., hollow circles in Figure 6) only require
type matching, e.g., string, int or ipv4-addr. If a matched path
from root to terminal (e.g., dotted green line in Figure 6) is found, we
can match the CLI instance with this template. Due to space limit,
we show detailed CGM algorithm with examples in Appendix C.
CLI Instance-Template Matching: With CGM as input, we de-
velop a CLI instance-template matching algorithm to determine
whether a CLI instance is matched with a CLI template (𝑐𝑙𝑖𝑔𝑟𝑎𝑝ℎ),
shown in Algorithm 1. In a nutshell, we conduct breadth-first search
to find a path from root to sink to match the tokens of CLI instance.
In each search step, we first find all potential candidates for the next
element. If all of them are unmatched, the matching algorithm can
terminate early. Otherwise, we record matched ones and proceed
to next search step.
In practice, the CLI model hierarchy derivation scheme can re-

trieve the majority of the hierarchy, but does not guarantee a full
recovery, because of the potential lack of data in original manuals.
For example, in Huawei corpus, we found that the relevant example
snippet for 'VPN instance MSDP view' is shared with another view
as shown in Figure 7. It is difficult and unreliable for an algorithm
to surely determine whether msdp command enables the first view
or the second or both. Therefore, we introduce an additional vali-
dation step after CLI hierarchy derivation. Specifically, we quantify
the certainty of the derivation based on the number of views and
examples of its data source. For a working view, if we fail to reliably
associate it with an example snippet, we record it with all poten-
tially relevant snippets, so that NetOps can review them later to
resolve these ambiguous cases with their domain knowledge. With
large-scale automated derivation and targeted validation, we can

SIGCOMM ’22, August 22-26, 2022, Amsterdam, Netherlands H. Chen et al.

Algorithm 1: CLI Instance-Template Matching
1 Func is_cli_match(cli, 𝑐𝑙𝑖𝑔𝑟𝑎𝑝ℎ):
2 cli_eles = cli.split()
3 next_ind = 0
4 next = cli_eles[next_ind]
5 next_candis = get_graph_root(𝑐𝑙𝑖𝑔𝑟𝑎𝑝ℎ)
6 while True do
7 res = match_next(next, next_candis, 𝑐𝑙𝑖𝑔𝑟𝑎𝑝ℎ)
8 if not res['match_flag'] then
9 break

10 next_candis = get_next_candis(𝑐𝑙𝑖𝑔𝑟𝑎𝑝ℎ , res['matched'])
11 next_ind += 1
12 if next_ind >= len(cli_eles) then
13 break

14 next = cli_eles[next_ind]

15 if next_ind >= len(cli_eles) and is_reach_end(next_candis) then
16 return {'match_flag': True}

17 return {'match_flag': False}

Figure 7: An example ambiguous view not be resolved by our
model hierarchy derivation scheme.

obtain a complete CLI model hierarchy with semantic descriptions
of individual CLI commands, i.e., the validated VDM.

5.3 Validation with Empirical Data
We so far mainly utilize contents in the parsed VDM corpus for

validation. In this part, we take a further step to leverage another
data source, empirical device configurations. The workflow of this
stage of validation is shown in Figure 8: for each CLI instance in
a configuration file, we first find its matched CLI template; then
we check whether the matched template and that of its parent CLI
instance form a parent-child relationship on the CLI hierarchy. We
record unmatched CLI instances and the reasons (e.g., not found
matched CLI template, unmatched hierarchy) for the experts to
audit later.

We note that the configurations on the existing running-devices
may not cover the all CLI commands, since the running devices
may only enable needed features. However, CLI commands covered
by the current device configurations are the most commonly-used
ones in practice.
For those CLI commands which are unused in empirical config-

urations, we leverage the constructed CGM as shown in Figure 6
to generate CLI command instances (e.g., enumerating paths from
root to sink and instantiating the parameter nodes); then we issue
the instances directly to the devices for validation; finally, we use
'show' commands (or equivalent commands on non-Cisco devices)
to check whether the instance has been correctly configured in the

Figure 8: Validation against device configuration.

device. Correct instances then becomes empirical configurations
from running devices, and we can run the same workflow above.

Through comprehensive validation schemes, we obtain validated
device models in the form of CLI hierarchy and semantic context of
individual CLIs, i.e., the validated VDM. This lay a solid foundation
for the Mapper.

6 NASSIMMAPPER
Due to the sheer number of CLI commands and parameters,

handcrafting such a mapping is tedious and error-prone. Thus we
seek to automate this process as much as possible. Using the Parser
and Validator, the VDM contains abundant semantic information
for all CLI commands and their parameters, and the parameters
in the UDM is also enriched with context information. Our key
innovation is to let the Mapper “learn” the knowledge from the
context information in VDM by applying recent advances in NLP
and deep learning (DL), and then predict the most likely mapping
to UDM.
Problem Formulation: Essentially, a mapping between two device
models is an alignment of the model parameters between the two
models. Given a VDM𝑉 with 𝑛𝑉 parameters 𝑃𝑉 =(𝑝𝑉0 ,𝑝

𝑉
1 ,···,𝑝

𝑉
𝑛𝑉 −1),

as well as a UDM𝑈 with 𝑛𝑈 parameters 𝑃𝑈 =(𝑝𝑈0 ,𝑝
𝑈
1 ,···,𝑝

𝑈
𝑛𝑈 −1), a

mapping𝑀𝑉 ⊲⊳𝑈 is a bipartite graph between 𝑃𝑉 and 𝑃𝑈 .
Mapper Workflow: The architecture of the NAssim Mapper is
illustrated in Figure 9. Given a VDM, we first find the relevant VDM
corpus for each of the model parameters and then locate the key
context information, e.g., descriptions of the CLI command and its
parameters. For a UDM,we directly retrieve the context information
of each parameter. Then, we use a DL-based model to encode the
context information and obtain the vector representations, i.e., the
context embedding. Finally, we evaluate if a pair of parameters from
two models are referring to the same concept by measuring the
similarity between their context embedding vectors. We go through
all possible pairs of parameters from the two models and eventually
obtain the mapping𝑀𝑉 ⊲⊳𝑈 . The UDM we use in our prototype is
a proprietary model designed by the experts based on their years
of experience on managing large enterprise networks. Figure 10
shows an example of mapping a parameter of a VDM to an attribute
of our UDM.

6.1 Context Extraction
For each parameter, we extract relevant semantic information

from the VDM (or UDM) as its context. Formally, for VDM (or
UDM) 𝑀 , with 𝑛𝑀 parameters and one of its parameter 𝑝𝑀

𝑖
(𝑖∈

{0,1,···,𝑛𝑀−1}), we use 𝑐 (𝑝𝑀
𝑖
)=[𝑠0

𝑖
,𝑠1
𝑖
,···,𝑠𝑘𝑀−1

𝑖
] to represent the

Software-Defined Network Assimilation SIGCOMM ’22, August 22-26, 2022, Amsterdam, Netherlands

Figure 9: Detailed workflow of Mapper in VDM-UDM mapping
phase.

context we extract for 𝑝𝑀
𝑖
, where each 𝑠 is a text sequence and 𝑘𝑀

is the number of extracted sequences. Depending on the amount
of available information of each device model, 𝑘𝑀 for each model
could be different. Among available contextual information, we
find the following ones valuable for the mapping tasks: the name of
parameters and CLI commands, the description of parameters, the
parent views, and the function description of the CLI commands.

6.2 Context Encoding/Matching with NetBERT
To encode the contextual information into vectors, BERT [32]

is the most popular NLP model suitable for this task. Given a se-
quence of text tokens, BERT produces a contextualized representa-
tion of each token with a stack of Transformers [50]. SBERT[45] is
a siamese network of BERT, which is pre-trained with the sentence
matching objective and a large NLI dataset. It is capable of encod-
ing two semantically similar text sequences into two embedding
vectors that are close in the embedding space. However, such a
network may have limited performance in a domain that is never
seen in the pre-training corpus.
Therefore, we adopt and adapt SBERT for the task of context

encoding, and we name the resultant model NetBERT. NetBERT is
inherited from an existing pre-trained SBERT model, which is fine-
tuned with a sentence matching objective on mapped VDM-UDM
parameter pairs to achieve Domain Adaptation (DA).
Embedding Generation: Before going through the details of DA,
we show how NetBERT is used to do the context encoding. We use
the NetBERT model to encode the text sequences in the contextual
information into vector representations. We encode each of the
text separately and then produce an embedding matrix, which we
call a context embedding. Assume the output dimension of the
encoder 𝑒 (·) is𝑚, then the context embedding of parameter 𝑝𝑀

𝑖
is

formulated as Equation 1.

𝐸𝑀𝑖 =𝑒 (𝑐 (𝑝𝑀𝑖))=𝑒 ([𝑠0𝑖 ,𝑠
1
𝑖 ,···,𝑠

𝑘𝑀−1
𝑖

])∈𝑅𝑘𝑀×𝑚 (1)
If we want to map a VDM𝑉 to a UDM𝑈 , and one of the pairs of

parameters is (𝑝𝑉
𝑖
,𝑝𝑈
𝑗
). Then, the encoder 𝑒 (·) produces a pair of

context embedding vectors (𝐸𝑉
𝑖
,𝐸𝑈

𝑗
)∈(𝑅𝑘𝑉 ×𝑚,𝑅𝑘𝑈 ×𝑚), where 𝑘𝑉

is not necessarily equal to 𝑘𝑈 .
Parameter Mapping: The mapping between two model parame-
ters can be determined by evaluating the similarities of their cor-
responding context embedding vectors. We use row-wise cosine

Figure 10: An example of VDM-UDM mapping.

similarity to measure the similarity between two context embed-
ding vectors. For each pair of row vectors from E𝑉

𝑖
and E𝑈

𝑗
, we

compute a cosine similarity score. Given the number of contexts 𝑘𝑉
and𝑘𝑈 , we have𝑘𝑉×𝑘𝑈 pairs of vectors compared. Then, we build a
weight vector w=⟨𝑤0,𝑤1,···,𝑤𝑘𝑉 ×𝑘𝑈 −1⟩(𝑠 .𝑡 .

∑𝑘𝑉 ×𝑘𝑈 −1
𝑡=0 𝑤𝑡=1) to bal-

ance all pairs of context groups, and combine all the cosine scores
via a weighted sum. Equation 2 shows the process of computing
the similarity between E𝑉

𝑖
and E𝑈

𝑗
. The operator ⊗ computes the

row-wise cosine similarities of two matrices.
𝑆𝑖𝑚(E𝑉𝑖 ,E

𝑈
𝑗)=w·(E𝑉𝑖 ⊗E

𝑈
𝑗) (2)

The weight matrix w is a hyper-parameter, which can be manu-
ally specified or automatically generated via grid search. In the
simplest setting, we may set w as a uniform weighting vector, i.e.
𝑤𝑡=

1
𝑘𝑉 ×𝑘𝑈 ,∀𝑤𝑡∈w. Given a VDM parameter, we use the above sim-

ilarity measurement to find top-K similar parameters in UDM as
the mapping recommendations.

6.3 Fine-tuning NetBERT
Given a few mapped VDM-UDM parameter pairs labeled by

NetOps experts, we may generate a training corpus for fine-tuning
the NetBERT model. We treat all the mapped pairs as positive pairs
and do random sampling to generate the negative pairs. For each
pair of parameters, we extract their contexts and feed them as
the input into the current NetBERT model. We use exactly the
same siamese architecture as the the original SBERT model and
the sentence matching training objective to do the fine-tuning.
In the case of unsupervised setting, i.e.no mapped VDM-UDM is
provided, NetBERT is equivalent to SBERT. But with more human
efforts involved, NetBERT is able to be more adapted to the network
configuration domain.

7 EVALUATION
We implement a prototype of NAssim in Python 3.8. Using this,

we evaluate NAssim in the following aspect: 1) the effectiveness
and reliability of VDM construction phase; 2) the performance of
VDM-UDM mapping phase.

7.1 Prototype Implementation
For the manual parsing framework, we implement the base

Parser and Parser_<vendor> to support parsing online manu-
als (HTML format) of four popular vendors: Cisco, Huawei, Nokia
and H3C. We mainly utilize the Beautiful-soup library [3] to im-
plement their parsing() functions, and pyparsing [18] as parser
generator to implement the CLI formal syntax parser. We imple-
ment the Validator in ∼1200 lines of code (LOC), and we spend most
effort in model hierarchy derivation and validation (∼700 LOC),
which utilizes the NetworkX [14] library. For the Mapper, we use
the PyTorch [19] library to implement the model and algorithms in

SIGCOMM ’22, August 22-26, 2022, Amsterdam, Netherlands H. Chen et al.

Vendor/Model/ReleaseYear - Huawei/NE40E/2021 Cisco/Nexus5500/2011 Nokia/7750SR/2021 H3C/S3600/2009

Main Statistics
#CLI Commands 12874 278 14046 759

#Views 607 27 3832 28
#CLI-View Pairs 36274 366 22734 851

Adaption Cost parsing() LOC 45 52 57 41
get_cli_parser() LOC 8 6 10 8

Syntax Validation #Invalid CLI Commands 13 19 139 13

Model Hierarchy
Derivation & Validation

#Example Snippets 15466 523 / 1147
Construction Time (second) 785.58 14.29 94.56* 34.3

#Ambiguous Views 47 8 / 4
Device Configuration

Validation
#Config Files 197 / 416 /
Matching Ratio 100% / 100% /

Table 4: Evaluation of the VDM Construction Phase. *Nokia manuals do not provide examples, but they explicitly specify model hierarchy
in the manuals. Thus, we extract the hierarchy using Parser_<nokia> by implementing extra functions

∼800 LOC. We evaluate our implementation on Ubuntu 18.04 with
a 8-core 3.0GHz CPU, 64GB memory and 1 Nvidia V100 GPU.

7.2 Evaluation of VDM Construction Phase
In this part, we would like to answer the essential question

that whether it is feasible and reliable to construct vendor-specific
device models from their user manuals. Therefore, we demon-
strate our operational experiences and results on applying our
proposed Parser and Validator to construct refined and validated
VDM from four manuals of popular vendors: Huawei NE40E Com-
mand Reference [13], Cisco Nexus 5500 Series NX-OS Unicast Rout-
ing Command Reference [4], Nokia 7450 ESS/7750 SR/7950 XRS
Reference [15] and H3C S3600 Command Manual [11].
Statistics of Parsed VDMs We first summarize basic statistics
of constructed VDMs. Table 4 show the total number of CLI com-
mands in four VDMs. Nowadays, a manual can covers up to 10k+
CLI commands. In our evaluation, we find it common that a sin-
gle CLI command works under multiple views. For example, peer
<ipv4-address> as-number <as-number> can work under BGP
view, BGP multi-instance view, BGP-VPN instance view etc. to cre-
ate a peer with specified AS-number. In the CLI model hierarchy,
we should use multiple nodes to represent the CLI command with
different parent CLI commands. In other words, the size of VDM
should be quantified by the number of CLI-View pairs. As shown
in Table 4, the numbers of CLI-View pairs are prominently larger
than that of CLI commands for all vendors. The considerable size
of VDMs justifies the need to design an automated framework.
Adapting Parser to NewVendorWe next investigate the adaption
cost. Considering the major parsing logic is similar across all ven-
dors, we develop a basic code skeleton of parsing. For implement-
ing each vendor' parser, we add vendor-specific processing details
to the skeleton, mainly modifying content extraction logic of fields
in Table 3. Empirically, we use the modified LOC of vendor-specific
parsing() against basic skeleton, and LOC of get_cli_parser()
functions to quantify the efforts required for a new vendor. As our
evaluation results shown in Table 4, it takes ∼50 LOC per vendor,
which is an acceptable one-time cost.
Formal Syntax ValidationWe apply the syntax validation scheme
to identify problematic CLI commands in the preliminary VDM.

It is unsurprising that we identify invalid CLIs in all vendors, 184
syntactic errors in total as shown in Table 4, because manuals are
human-written documents after all. However, it is noted that the
ratio of invalid CLI commands over total ones are minimal. We
believe that user manuals, as official documents should experience
a certain rounds of proofreading and editing. With basic manual
quality assurance and revision guidance provided by our validation,
the credibility of the derived VDM can be further enhanced.
Model Hierarchy Validation The computation complexity of
model hierarchy derivation depends on the number of views and
the number of examples, as is shown in Table 4. The largest model
hierarchy takes around 13 minutes to construct, with around 84%
of processing time is spent on the CLI graph model (CGM) genera-
tion for all CLI commands before starting CLI instance-template
matching on the example snippets. We believe the cost of time
is reasonable as it is only done once per manual. The validator
also identifies 59 ambiguous views in four manuals which are then
reported to NetOps for revision.
Empirical Data Validation In our evaluation, we only conduct
device configuration validation for Huawei and Nokia due to the
availability of large numbers of their configuration files from data
center network. We collect 613 configuration files in total, 197 for
Huawei and 416 for Nokia. Huawei set has 93617 lines of com-
mand instances with 17391 unique lines. Nokia set has 163854
lines with 38352 unique ones. We validate the Huawei and Nokia
VDMs against corresponding configuration files as illustrated in
Figure 8. We find that 100% CLI instances in configuration files can
be matched to nodes on the CLI model hierarchy, which confirms
the completeness of our hierarchy derivation schemes. In our eval-
uation, the Huawei dataset is associated with only 153 command
templates, which is few compared to the 12874 total templates. This
corroborates with the fact that this dataset is from data centers,
where the same set of functions are used in thousands of devices.

7.3 Evaluation of VDM-UDMMapping Phase
We proceed to answer the question: can the proposed Mapper

ease the burden of NetOps engineers in SNA? As mentioned before,
Mapper acts as a recommender system to generate most likely
mapping between parameters of VDM and UDM. Thus, we evaluate

Software-Defined Network Assimilation SIGCOMM ’22, August 22-26, 2022, Amsterdam, Netherlands

Mapping Setting Models k in recall@top k (%)
1 3 5 7 9 10 20 30

Huawei-UDM

IR 41 61 69 76 79 80 90 93
SimCSE 40 59 66 68 70 72 77 81
SBERT 53 72 79 81 84 85 89 92

IR+SimCSE 43 68 75 79 81 82 89 92
IR+SBERT 56 75 81 85 87 88 91 94
NetBERT 57 74 80 85 86 87 91 94

IR+NetBERT 58 78 83 86 88 89 93 95

Nokia-UDM

IR 24 41 48 57 59 60 66 70
SimCSE 20 31 37 39 39 42 45 48
SBERT 34 38 49 49 52 52 58 53

IR+SimCSE 24 35 42 46 48 48 57 61
IR+SBERT 34 42 52 54 55 58 62 72
NetBERT 34 43 53 66 67 70 71 73

IR+NetBERT 35 47 55 65 68 68 71 73

Table 5: Mapper performance

the mapping performance of Mapper to quantify its benefits to
NetOps.
Metric: To evaluate the mapping performance of the Mapper, we
adopt Recall@top-k, which denotes the percentage of test cases
where the correct matching parameters are in top k recommenda-
tion by Mapper. Higher recall at smaller k implies that Mapper is
more helpful to assist NetOps.
Ground Truth: To evaluate the Mapper, we ask NetOps engineers
to help annotate Huawei and Nokia VDMs to the given UDM. In
total, we have 381 mapping annotations between UDM and Huawei
VDM, and 110 for Nokia.
Fine-tuning: Given the fact that the annotated data is scarce, we
use cross-vendor tuning and validation to evaluate the effectiveness
of fine-tuning. We fine-tuned NetBERT with annotated parameter
pairs from Nokia and then evaluate its performance on Huawei
dataset. Similarly, we fine-tuned NetBERT on Huawei dataset and
then evaluate it on Nokia dataset. We took 1:10 positive/negative
rate in negative sampling. We observe that only 1 epoch of training
is necessary as more epochs may easily cause over-fitting.
Compared Models: We compare against these models:

• IR: A natural idea is to use an information retrieval (IR)
approach for mapping candidates generation. We use TF-
IDF [38, 41] to measure similarity of parameter pair between
UDM and VDM and report ones with k top scores.

• SBERT : SBERT [45] enhances the pre-trained BERT network
using siamese and triplet network structures to derive se-
mantically meaningful sentence embeddings that can be com-
pared using cosine-similarity.

• SimCSE: SimCSE [35] utilizes contrastive learning objective
to regularize pre-trained embeddings to favor sentence simi-
larity measuring task.

• IR+DL: This model integrate the IR approach and DL models,
where DL can be any DL-based sentence matching model.
They first utilize the IR approach for roughly matching top-
50 candidates, and then leverage DL models to finely rank
the candidates to output the final top k matching ones.

Results: We evaluate recall@top k with k from 1 to 30 of different
context comprehension models on VDM-UDM mapping tasks. The
results are summarized in Table 5. In unsupervised setting, SBERT
performs consistently better than SimCSE. The composite IR+DL

models achieve better performance than their IR or DL models.
When supervision is provided, fine-tuned NetBERT out-performs
all the other models, this is because we adapt the NetBERT model
to the domain of network configurations. For Huawei dataset, the
improvement of fine-tuning is 1-4 percents across all top-k metrics.
For Nokia dataset, the fine-tuning achieves up to 18 percents im-
provement (recall@10). This is because Huawei dataset has much
more training pairs than those from Nokia dataset, thus the fine-
tuning on Huawei dataset is more effective. Besides, we observe that
NetBERT performs as well as IR+NetBERT and even out-performs it
in some recall@k. This suggests that a well-tuned NetBERT model
can be sufficient for our task. Regarding the save of human ef-
fort, for Huawei, NetOps engineers can find correct parameter-pair
within NetBERT’s Top-10 recommendations with 89% accuracy.
This means, if Mapper is allowed to provide 10 suggestions for
parameter-pair matching, NetOps engineers only need to refer to
the manual 11% of the time during the mapping phase, resulting in
acceleration of the mapping phase by 9.1x.

8 DISCUSSION

8.1 Device Configuration Models
There are two common configuration models of network devices:

CLI and YANG/NETCONF. CLI is the entry-level way to configure
network devices. Almost all devices in the existing infrastructure
support CLI functionality, both the latest and the legacy, and almost
all vendors have provided comprehensive description of their CLI
commands in their manuals Thus, it is intuitive to configure a net-
work via CLI. YANG/NETCONF is regarded as an advanced way for
network configuration. YANG is a data modeling language for the
NETCONF configuration management protocol. YANG/NETCONF
aims to enable pushing and pulling of configuration data in a more
structured manners for network automation. However, it is more
difficult to master YANG/NETCONF than CLI due to its higher
complexity. The YANG provides descriptions of a network’s nodes
and their interactions. Each YANG module defines a hierarchy of
data that can be used for NETCONF-based operations. Modules can
import data from other external modules and include data from sub-
modules. Although the YANG schema is indeed a standard, the data
represented in the YANG model vary based on vendor implementa-
tion.We found that NetOps experts that master YANG/NETCONF is
far less than those that master CLI in our field interview. As shown
in the repositories maintained by device vendors [23–25], vendor-
specific YANG models are less intuitive as their CLI counterparts
elaborated in the manuals [4, 13, 15]. In this work, we adopt CLI-
based vendor-specific device models (VDM) as the basis so that the
SDN assimilation can cover more vendors and devices, the legacy
and new; and NAssim can be adopted more smoothly by more
NetOps teams at this stage in order to consistently improve our
methods. It is believed that the core ‘Parsing-Validating-Mapping’
philosophy of NAssim can also be applied to address heterogene-
ity between vendor-specific YANG models and the unified device
model (UDM), but additional efforts should be made to summarize
intuitive representation from YANG repositories [23–25].

SIGCOMM ’22, August 22-26, 2022, Amsterdam, Netherlands H. Chen et al.

8.2 Vendor-neutral Reference Frame
For decades, NetOps have been trying to ease the burden of net-

work configuration with increasing complexity of multi-vendor
enterprise-level networks. The development of YANG is the most
representative effort. YANG was initially standardized in 2010 un-
der RFC 6020 [28] and is currently maintained within the Internet
Engineering Task Force (IETF). The IETF YANG tries to create
vendor-neutral data models. However, it is still limited in scope
with what it can configure between multiple vendors, and widely
considered the easiest version of YANG to start with. On top of
it, vendors create their own versions of YANG to control features
specific to their equipment [23–25]. This makes managing multi-
vendor networks difficult since different scripts needed to be created
and maintained for different devices. The OpenConfig project [16]
is then initiated to create a vendor-neutral reference model interop-
erable between multiple vendors. Today, some vendors like Cisco
support OpenConfig YANG. However, their native data models still
provide most configuration coverage, while their supported open
models only cover a fraction of features [26]. OpenConfig still has
a long way to go for complete interoperability. In retrospect of the
development course of YANG, it was understood that hardware
vendors persistently introduce more features to reinforce their com-
petitiveness. This certainly helps advance network performance,
but also creates further fractures in the ecosystems to make it more
difficult to build a vendor-neutral configuration reference frame.
NAssimmakes initial efforts to assimilate device models of multiple
vendors from a pragmatic perspective. However, making our net-
works toward a more manageable infrastructure requires further
considerable efforts from the academia and the community.

8.3 Network Assimilation beyond SDN
The design of NAssim is motivated by practical challenges in net-

work configuration management. Most enterprise-level networks
present multi-vendor nature and it is prevalent to have a software-
defined controller situated between upper-layer network functions
(northbound) and heterogeneous network devices (southbound) in
current NetOps practices. The southbound of the SDN controller
makes the heterogeneous devices transparent to the northbound.
For example, if a network function requires to change autonomous
system numbers of the BGP protocol, the controller should execu-
tive correct configuration commands to put the change into effect
on the targeted devices regardless of their vendors. Currently, it
requires significant human efforts to assimilate multi-vendor device
configuration models into the central controllers. Thus, NAssim
seeks to make this process more efficient and affordable for NetOps.
From a broader perspective, the essential research problem be-

hind network assimilation is to identify semantic equivalence be-
tween network devices. NAssim is an initial effort to address this
problem in the context of software-defined network centralized
configuration management. In a nutshell, NAssim aims to identify
commands and parameters with the equivalent configuration effect
between multi-vendor device models and the unified device model
in the controller. In the envision of network autopilot, more efforts
should be made to identify other aspects of semantic equivalence
beyond configuration commands, also other network paradigm
beyond conventional router/switch network, i.e., semantic interop-
erability in IoT network [27].

9 RELATEDWORKS
To the best of our knowledge, we conduct the first comprehensive

study and validation of network device manuals, and NAssim is
the first work which aims to simplify the process of introducing
new vendors and devices with parsed configuration models from
manuals.
Recent work [10, 16, 46–49] proposes the use of centralized

UDMs, such as OpenConfig, FBNet for network control and man-
agement. Several industrial solutions [12, 17, 21, 40] adopt template-
based approaches for configuration generation. Many efforts also
aim to develop abstract languages or models to specify configu-
ration in a vendor-neutral fashion [6, 16, 49] or in a user-friendly
manner [37]. However, none has consider the problem of parsing a
configuration model from the semi-structure user manual, thus for
these SDN networks, assimilating a new device requires significant
human effort.

Another line of related work is network verification, which con-
ducts analysis in provider networks and enterprise networks by
formal methods [30, 31, 34, 36, 51]. Yet, they only work for limited
vendors, and do not consider errors and inconsistency in manuals.
NAssim can help extend them to other vendors they cannot support
easily with the parsed and validated corpus and the mapping model.
Recent NLP techniques adopt deep pre-trained language mod-

els to encode a text sequence into a high-dimensional embedding
vectors, which carries its semantic meaning. BERT[32] is the most
popular pre-trained language model and it has been applied in
various NLP tasks. While BERT is good at capturing the semantic
information of the training corpus, it usually needs to be fine-tuned
to fit the downstream task. SBERT[45] is a siamese BERT network
pre-trained specifically for sentence matching, which naturally fits
our need. SimCSE[35] is another BERT-based model for sentence
matching, which is pre-trained with contrastive learning objectives.
We evaluate both SBERT and SimCSE on our mapping task, and find
them under-perform NetBERT, our fine-tuned and domain-adapted
model.

10 CONCLUSION
The current SNA process is a pain for NetOps engineers, re-

quiring significant human effort to reading and understanding the
manuals to build and bridge configuration model of a new device
to the UDM in the SDN controller. We build NAssim to assist and
accelerate the SNA process. Our solution features a unified parser
framework, a rigorous validator and a mapper using the domain-
adapted BERT model. NAssim liberates the NetOps engineers by
learning directly from manuals to form device models which are
comprehensible by both the SDN controller and human experts.
Our evaluation shows, we can accelerate the assimilation process
by 9.1x. We also release a validated and expert-curated dataset of
parsed manual corpus for future research.
Acknowledgements: We thank the anonymous SIGCOMM re-
viewers for their constructive feedback and suggestions. This work
was supported in part by funding from the National Key R&D
Program of China 2020YFB1807800, the Research Grants Council
of Hong Kong (11209520) and CUHK (4055138, 4937007, 4937008,
5501329, 5501517).

Software-Defined Network Assimilation SIGCOMM ’22, August 22-26, 2022, Amsterdam, Netherlands

REFERENCES
[1] Online; Last accessed Jan. 2022. ANother Tool for Language Recognition. https:

//www.antlr.org/. (2022).
[2] Online; Last accessed Jan. 2022. Apstra. https://apstra.com/. (2022).
[3] Online; Last accessed Jan. 2022. Beautiful-soup Library. https://beautiful-soup-4.

readthedocs.io/en/latest/. (2022).
[4] Online; Last accessed Jan. 2022. Cisco Nexus 5500 Series NX-OS Unicast

Routing Command Reference. https://www.cisco.com/c/en/us/td/docs/switches/
datacenter/nexus5500/sw/command/reference/unicast/n5500-ucast-cr.html.
(2022).

[5] Online; Last accessed Jan. 2022. Cisco sues Huawei over intel-
lectual property. https://www.computerworld.com/article/2578617/
cisco-sues-huawei-over-intellectual-property.html. (2022).

[6] Online; Last accessed Jan. 2022. Distributed Management Task Force, Inc. https:
//www.dmtf.org/. (2022).

[7] Online; Last accessed Jan. 2022. Facebook, Tinder, Instagram suffer widespread
issues. https://mashable.com/2015/01/27/facebook-tinder-instagram-issues/.
(2022).

[8] Online; Last accessed Jan. 2022. gNXI Tools - gRPC Network Management/Oper-
ations Interface Tools. https://github.com/google/gnxi/. (2022).

[9] Online; Last accessed Jan. 2022. Google routing blunder sent Japan’s Internet dark
on Friday. https://www.theregister.co.uk/2017/08/27/google_routing_blunder_
sent_japans_internet_dark/. (2022).

[10] Online; Last accessed Jan. 2022. Graph-Based Live Queries in AOS. https:
//apstra.com/products/. (2022).

[11] Online; Last accessed Jan. 2022. H3C S3600 Command Manual.
http://www.h3c.com/en/Support/Resource_Center/HK/Switches/H3C_S3600/
H3C_S3600_Series_Switches/Technical_Documents/Command/Command/
H3C_S3600_CM-Release_1602(V1.02)/. (2022).

[12] Online; Last accessed Jan. 2022. HPE Network Management (HP OpenView).
https://www8.hp.com/us/en/solutions/business-solutions/printingsolutions/
overview.html. (2022).

[13] Online; Last accessed Jan. 2022. Huawei NE40E Command Refer-
ence. https://support.huawei.com/enterprise/en/routers/ne40e-pid-15837?
category=reference-guides. (2022).

[14] Online; Last accessed Jan. 2022. NetworkX Library. https://networkx.org/,.
(2022).

[15] Online; Last accessed Jan. 2022. Nokia 7450 ESS/7750 SR/7950 XRS Reference.
https://infocenter.nokia.com/public/7750SR140R4/index.jsp. (2022).

[16] Online; Last accessed Jan. 2022. OpenConfig. http://openconfig.net/. (2022).
[17] Online; Last accessed Jan. 2022. Opsware. http://www.opsware.com/. (2022).
[18] Online; Last accessed Jan. 2022. pyparsing module. https://pyparsing-docs.

readthedocs.io/en/latest/index.html. (2022).
[19] Online; Last accessed Jan. 2022. PyTorch Library. https://pytorch.org/. (2022).
[20] Online; Last accessed Jan. 2022. Stock trading closed on NYSE after glitch

caused major outage. https://www.theguardian.com/business/live/2015/jul/08/
new-york-stock-exchange-wall-street. (2022).

[21] Online; Last accessed Jan. 2022. Tivoli Netcool Configuration Manager. http:
//ibm.com/software/products/en/tivonetcconfmana. (2022).

[22] Online; Last accessed Jan. 2022. United Airlines jets grounded by computer router
glitch. https://www.bbc.com/news/technology-33449693. (2022).

[23] Online; Last accessed June. 2022. Cisco YANG Model Repository. https://github.
com/YangModels/yang/tree/main/vendor/cisco. (2022).

[24] Online; Last accessed June. 2022. Huawei YANG Model Repository. https:
//github.com/Huawei/yang. (2022).

[25] Online; Last accessed June. 2022. Nokia YANG Model Repository. https://github.
com/nokia/7x50_YangModels. (2022).

[26] Online; Last accessed June. 2022. OpenConfig Support in Cisco. https://www.
ciscolive.com/c/dam/r/ciscolive/us/docs/2019/pdf/DEVNET-1775.pdf. (2022).

[27] Online; Last accessed June. 2022. What is semantic interoperability in
IoT and why is it important? https://www.ericsson.com/en/blog/2020/7/
semantic-interoperability-in-iot. (2022).

[28] Online; Last accessed June. 2022. YANG - A Data Modeling Language for the
Network Configuration Protocol (NETCONF). https://datatracker.ietf.org/doc/
html/rfc6020. (2022).

[29] Kent Beck. 2003. Test-driven development: by example. Addison-Wesley Profes-
sional.

[30] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. 2017. A General
Approach to Network Configuration Verification. In Proc. ACM SIGCOMM.

[31] Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitendra Padhye, and David Walker.
2016. Don’t Mind the Gap: Bridging Network-wide Objectives and Device-level
Configurations. In Proc. ACM SIGCOMM.

[32] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
In NAACL. Association for Computational Linguistics, Minneapolis, Minnesota,
4171–4186. https://doi.org/10.18653/v1/N19-1423

[33] Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever, and Martin Vechev. 2018.
NetComplete: Practical Network-Wide Configuration Synthesis with Autocom-
pletion. In Proc. USENIX NSDI.

[34] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-Sullivan, Ramesh Govindan,
Ratul Mahajan, and Todd Millstein. 2015. A General Approach to Network
Configuration Analysis. In Proc USENIX NSDI.

[35] Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021. SimCSE: Simple Contrastive
Learning of Sentence Embeddings. (2021).

[36] Aaron Gember-Jacobson, Wenfei Wu, Xiujun Li, Aditya Akella, and Ratul Maha-
jan. 2015. Management Plane Analytics. In Proc. ACM IMC.

[37] Arthur S. Jacobs, Ricardo J. Pfitscher, Rafael H. Ribeiro, Ronaldo A. Ferreira,
Lisandro Z. Granville, Walter Willinger, and Sanjay G. Rao. 2021. Hey, Lumi!
Using Natural Language for Intent-Based Network Management. In 2021 USENIX
Annual Technical Conference (USENIX ATC 21). USENIX Association, 625–639.
https://www.usenix.org/conference/atc21/presentation/jacobs

[38] Karen Spärck Jones. 2004. A statistical interpretation of term specificity and its
application in retrieval. J. Documentation 60 (2004), 493–502.

[39] Hyojoon Kim and Nick Feamster. 2013. Improving network management with
software defined networking. IEEE Communications Magazine 51, 2 (2013), 114–
119.

[40] Hongqiang Harry Liu, Xin Wu, Wei Zhou, Weiguo Chen, Tao Wang, Hui Xu,
Lei Zhou, Qing Ma, and Ming Zhang. 2018. NetCraft: Automatic Life Cycle
Management of Network Configurations. In Proc. ACM SelfDN.

[41] Hans Peter Luhn. 1957. A Statistical Approach to Mechanized Encoding and
Searching of Literary Information. IBM J. Res. Dev. 1 (1957), 309–317.

[42] Ratul Mahajan, David Wetherall, and Tom Anderson. 2002. Understanding BGP
Misconfiguration. In Proc. ACM SIGCOMM.

[43] Daniel D McCracken and Edwin D Reilly. 2003. Backus-naur form (bnf). In
Encyclopedia of Computer Science. 129–131.

[44] Juniper Networks. Technical report, May 2018. Whats Behind Network Down-
time? Proactive Steps to Reduce Human Error and Improve Availability of Net-
works. (Technical report, May 2018).

[45] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks. In EMNLP. Association for Computational Lin-
guistics, Hong Kong, China, 3982–3992. https://doi.org/10.18653/v1/D19-1410

[46] Brandon Schlinker, Radhika Niranjan Mysore, Sean Smith, Jeffrey C Mogul, Amin
Vahdat, Minlan Yu, Ethan Katz-Bassett, and Michael Rubin. 2015. Condor: Better
Topologies Through Declarative Design. In Proc. ACM SIGCOMM.

[47] Xin Sun and Geoffrey G Xie. 2013. Minimizing Network Complexity through
Integrated Top-Down Design. In Proc. ACM CoNEXT.

[48] Yu-Wei Eric Sung, Xin Sun, Sanjay G Rao, Geoffrey G Xie, and David A Maltz.
2010. Towards Systematic Design of Enterprise Networks. IEEE/ACM Transactions
On Networking 19, 3 (2010), 695–708.

[49] Yu-Wei Eric Sung, Xiaozheng Tie, Starsky HY Wong, and Hongyi Zeng. 2016.
Robotron: Top-down Network Management at Facebook Scale. In Proc. ACM
SIGCOMM.

[50] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is All You
Need. In NIPS (NIPS’17). Curran Associates Inc., Red Hook, NY, USA, 6000–6010.

[51] Konstantin Weitz, Doug Woos, Emina Torlak, Michael D Ernst, Arvind Krish-
namurthy, and Zachary Tatlock. 2016. Scalable Verification of Border Gateway
Protocol Configurations with an SMT Solver. In Proc. ACM OOPSLA.

[52] Wenfeng Xia, Yonggang Wen, Chuan Heng Foh, Dusit Niyato, and Haiyong Xie.
2014. A survey on software-defined networking. IEEE Communications Surveys
& Tutorials 17, 1 (2014), 27–51.

https://www.antlr.org/
https://www.antlr.org/
https://apstra.com/
https://beautiful-soup-4.readthedocs.io/en/latest/
https://beautiful-soup-4.readthedocs.io/en/latest/
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus5500/sw/command/reference/unicast/n5500-ucast-cr.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus5500/sw/command/reference/unicast/n5500-ucast-cr.html
https://www.computerworld.com/article/2578617/cisco-sues-huawei-over-intellectual-property.html
https://www.computerworld.com/article/2578617/cisco-sues-huawei-over-intellectual-property.html
https://www.dmtf.org/
https://www.dmtf.org/
https://mashable.com/2015/01/27/facebook-tinder-instagram-issues/
https://github.com/google/gnxi/
https://www.theregister.co.uk/2017/08/27/google_routing_blunder_sent_japans_internet_dark/
https://www.theregister.co.uk/2017/08/27/google_routing_blunder_sent_japans_internet_dark/
https://apstra.com/products/
https://apstra.com/products/
http://www.h3c.com/en/Support/Resource_Center/HK/Switches/H3C_S3600/H3C_S3600_Series_Switches/Technical_Documents/Command/Command/H3C_S3600_CM-Release_1602(V1.02)/
http://www.h3c.com/en/Support/Resource_Center/HK/Switches/H3C_S3600/H3C_S3600_Series_Switches/Technical_Documents/Command/Command/H3C_S3600_CM-Release_1602(V1.02)/
http://www.h3c.com/en/Support/Resource_Center/HK/Switches/H3C_S3600/H3C_S3600_Series_Switches/Technical_Documents/Command/Command/H3C_S3600_CM-Release_1602(V1.02)/
https://www8.hp.com/us/en/solutions/business-solutions/printingsolutions/overview.html
https://www8.hp.com/us/en/solutions/business-solutions/printingsolutions/overview.html
https://support.huawei.com/enterprise/en/routers/ne40e-pid-15837?category=reference-guides
https://support.huawei.com/enterprise/en/routers/ne40e-pid-15837?category=reference-guides
https://networkx.org/
https://infocenter.nokia.com/public/7750SR140R4/index.jsp
http://openconfig.net/
http://www.opsware.com/
https://pyparsing-docs.readthedocs.io/en/latest/index.html
https://pyparsing-docs.readthedocs.io/en/latest/index.html
https://pytorch.org/
https://www.theguardian.com/business/live/2015/jul/08/new-york-stock-exchange-wall-street
https://www.theguardian.com/business/live/2015/jul/08/new-york-stock-exchange-wall-street
http://ibm.com/software/products/en/tivonetcconfmana
http://ibm.com/software/products/en/tivonetcconfmana
https://www.bbc.com/news/technology-33449693
https://github.com/YangModels/yang/tree/main/vendor/cisco
https://github.com/YangModels/yang/tree/main/vendor/cisco
https://github.com/Huawei/yang
https://github.com/Huawei/yang
https://github.com/nokia/7x50_YangModels
https://github.com/nokia/7x50_YangModels
https://www.ciscolive.com/c/dam/r/ciscolive/us/docs/2019/pdf/DEVNET-1775.pdf
https://www.ciscolive.com/c/dam/r/ciscolive/us/docs/2019/pdf/DEVNET-1775.pdf
https://www.ericsson.com/en/blog/2020/7/semantic-interoperability-in-iot
https://www.ericsson.com/en/blog/2020/7/semantic-interoperability-in-iot
https://datatracker.ietf.org/doc/html/rfc6020
https://datatracker.ietf.org/doc/html/rfc6020
https://doi.org/10.18653/v1/N19-1423
https://www.usenix.org/conference/atc21/presentation/jacobs
https://doi.org/10.18653/v1/D19-1410

SIGCOMM ’22, August 22-26, 2022, Amsterdam, Netherlands H. Chen et al.

APPENDIX
Appendices are supporting material that has not been peer-

reviewed.

A MANUAL SNAPSHOTS
We show the screen snapshots of the online version of manaual

pages from Cisco, Nokia, Huawei, and H3C in Figure 11,12,13,14,
respectively.

Figure 11: A Snapshot of Cisco Manual.

B TESTS FOR PARSING COMPLETENESS
VALIDATION

In our practice, we specifically enforce the following validation
tests to ensure parsing quality.

• Keys Completeness Test: the parsed JSON files should be a
dictionary with at-least five basic keys in Table 3: 'CLIs',
'FuncDef', 'ParentViews', 'ParaDef' and 'Examples'.

• Type Restriction Test: Each fields should comply the type
restriction defined in Table 3.

• CLI Keyword/Parameter Self-check Test: We enforce an extra
check on the critical 'CLIs' fields to make sure the correctness
of CLI keywords/parameters identification. In original HTML

Figure 12: A Snapshot of Nokia Manual.

Figure 13: A Snapshot of Huawei Manual.

pages with rich text format (RTF), keyword and parameters
are generally differentiated by their font format. Through
our parsing framework Parser, parameters should be indi-
cated by angle brackets in plain text as shown in Figure 3.

Software-Defined Network Assimilation SIGCOMM ’22, August 22-26, 2022, Amsterdam, Netherlands

Figure 14: A Snapshot of H3C Manual.

To conduct CLI Keyword/Parameter self-check test, we ex-
tract the parameter tokens, i.e., those with angle brackets in
'CLIs' fields, and then do a cross-check via comparing these
tokens with parameters in 'ParaDef' fields. Through our vali-
dation tests, it is quickly found that the Cisco manual inter-
changeably use 'cKeyword', 'cBold' and 'cCN_CmdName' CSS
tags to indicate keywords in CLI commands, and the Huawei
manual interchangeably use 'cmdname' and 'strong'. With
the help of the test-driven development, we can in general
develop a specific Parser_<vendor> within one day.

C CGM ALGORITHM DETAILS

Figure 15: An example for CLI Graph Construction.

CLI Graph Model Construction: To construct the CGM, we
leverage the syntax parser in the formal syntax validation and

the parse action function supported by the pyparsing to assist
graph model construction, which allows us to specify functions to
call after successful matching of the tokens. Thus, we define the
following parse action functions:
def leaf_gen(tokens):

return [["leaf", {"name", tokens [0]}]]
def select_gen(tokens):

return [["select", tokens [0]. asList ()]]
def option_gen(tokens):

return [["option", tokens [0]. asList ()]]
def ele_gen(tokens):

if tokens.asList () != []:
return [["ele", tokens.asList ()]]

return tokens

The syntax parser as shown in Figure 5 with above parse actions
can turn a flat string of CLI template to a nested structure, denoted
as 𝑐𝑙𝑖𝑠𝑡𝑟𝑢𝑐 . Take above filter-policy command as an example, it
can be transformed into the structure shown in Figure 16.

Figure 16: A sample of nested CLI structure.

Algorithm 2: CLI Graph Model Construction
1 Func get_syntax_graph(𝑐𝑙𝑖𝑠𝑡𝑟𝑢𝑐 , 𝑐𝑙𝑖𝑔𝑟𝑎𝑝ℎ , 𝑑𝑖𝑐𝑡):
2 foreach 𝑒𝑙𝑒∈𝑐𝑙𝑖𝑠𝑡𝑟𝑢𝑐 do
3 if is_symbol_or_leaf(ele) then
4 symbol_leaf_process(ele, 𝑐𝑙𝑖𝑔𝑟𝑎𝑝ℎ , dict)
5 else
6 dict_ori = record_infos(dict)
7 get_syntax_graph(ele[1], 𝑐𝑙𝑖𝑔𝑟𝑎𝑝ℎ , dict)
8 post_process(dict_ori, dict)

With 𝑐𝑙𝑖𝑠𝑡𝑟𝑢𝑐 as input, we develop a recursive algorithm to con-
struct CLI graph as in Figure 6. The skeleton of recursive CGM
construction algorithm are shown in Algorithm 2. Nodes of CGM
𝑐𝑙𝑖𝑔𝑟𝑎𝑝ℎ come from either leaf or symbols like brackets and braces
in the nested 𝑐𝑙𝑖𝑠𝑡𝑟𝑢𝑐 . Thus, we perform graph node/edge insertion
in line 4. For nested 'ele', we recursively call the get_syntax_graph
(line 7) to process the inner elements. However, we record/process
the auxiliary information in dict (line 6 and 8) before/after re-
cursive calls. Structure dict mainly maintains prev_stack and
tail_stack to assist node/edge insertion. For each node, we add
directional edges from nodes in prev_stack to the current node.
The processed nodes that potentially have more children are stored

SIGCOMM ’22, August 22-26, 2022, Amsterdam, Netherlands H. Chen et al.

Algorithm 3: Function Details of CLI Graph Model Con-
struction
1 Func symbol_leaf_process(ele, 𝑐𝑙𝑖𝑔𝑟𝑎𝑝ℎ , dict):
2 if is_sep_symbol(ele) then
3 dict['tail_stack'].append('#')
4 return

5 if is_start_symbol(ele) then
6 node = '_'.join(dict['labels'][ele], len(dict['syms']), 'start')
7 dict['sym_stack'].append(node)
8 if is_end_symbol(ele) then
9 start_node = dict['sym_stack'].pop()

10 node = start_node.replace(’start’, ’end’)
11 if is_option(node) then
12 𝑐𝑙𝑖𝑔𝑟𝑎𝑝ℎ .add_edge(start_node, node)

13 if is_leaf(ele) then
14 node = ele
15 𝑐𝑙𝑖𝑔𝑟𝑎𝑝ℎ .add_node(node)
16 foreach prev ∈ dict['prev_stack'] do
17 𝑐𝑙𝑖𝑔𝑟𝑎𝑝ℎ .add_edge(prev, node)
18 dict['prev_stack'].clear()
19 dict['prev_stack'].append(node)
20 if is_tail_replace(dict['tail_stack']) then
21 dict['tail_stack'][-1] = node
22 else
23 dict['tail_stack'].append(node)
24 if is_end_symbol(ele) then
25 reshape_tail_stack(dict)

26 Func reshape_tail_stack(dict):
27 tail_stack = dict['tail_stack']
28 end_node = tail_stack[-1]
29 start_node = end_node.replace('end', 'start')
30 start_ind = tail_stack.index(start_node)
31 tail_new = tail_stack[0:start_ind] + [end_node]
32 dict['tail_stack'] = tail_new
33 Func record_infos(dict):
34 return copy(dict)
35 Func post_process(dict_ori, dict, ele, 𝑐𝑙𝑖𝑠𝑡𝑟𝑢𝑐):
36 next_ele = 𝑐𝑙𝑖𝑠𝑡𝑟𝑢𝑐 (ele_idx + 1)
37 prev_stack_ori = dict_ori['prev_stack']
38 if is_sep_symbol(next_ele) then
39 dict['prev_stack'] = copy(prev_stack_ori)
40 else
41 tail_stack = dict['tail_stack']
42 last_prev = prev_stack_ori[-1]
43 if last_prev ∈ tail_stack then
44 ind = tail_stack.index(last_prev) + 1
45 dict['prev_stack']= tail_stack[ind:]

in the tail_stack. When exiting a recursive call on an 'ele' , we can
determine next prev_stack based on two stacks in dict_ori and
dict. Figure 15 demonstrate the first eight node/edge insertion for
constructing CLI graph in Figure 6. The detailed CGM algorithms
are shown in Algorithm 2 and 3.

Algorithm 4: Function Details of CLI Instance-Template
Matching
1 Func match_next(next, next_candis, 𝑐𝑙𝑖𝑔𝑟𝑎𝑝ℎ):
2 match_flag = False
3 match_states = []
4 foreach candi ∈ next_candis do
5 if candi is None then
6 continue
7 if is_keyword(𝑐𝑙𝑖𝑔𝑟𝑎𝑝ℎ ,candi) and next == candi then
8 match_flag = True
9 match_states.append(candi)

10 if match_states != [] then
11 return {'match_flag': match_flag, 'match_states':

match_states}
12 foreach candi ∈ next_candis do
13 if candi is None then
14 continue
15 if is_para(𝑐𝑙𝑖𝑔𝑟𝑎𝑝ℎ ,candi) and is_type_fit(next, candi)

then
16 match_flag = True
17 match_states.append(candi)

18 return {'match_flag': False, 'match_states': match_states}
19 Func get_next_candis(match_states, 𝑐𝑙𝑖𝑔𝑟𝑎𝑝ℎ):
20 next_states = []
21 foreach item ∈ match_states do
22 succs = 𝑐𝑙𝑖𝑔𝑟𝑎𝑝ℎ .successors(item)
23 if succs == [] then
24 next_states.extend([None])
25 foreach succ ∈ succs do
26 next_states.extend(get_valid_succs(succ, 𝑐𝑙𝑖𝑔𝑟𝑎𝑝ℎ ,

[]))
27 return set(next_states)

28 Func get_valid_succssors(node, 𝑐𝑙𝑖𝑔𝑟𝑎𝑝ℎ , visited):
29 if is_valid_node(𝑐𝑙𝑖𝑔𝑟𝑎𝑝ℎ, node) then
30 return [node]
31 if 𝑐𝑙𝑖𝑔𝑟𝑎𝑝ℎ .successors(node) == [] then
32 return [None]
33 valid_succ = []
34 foreach succ ∈ 𝑐𝑙𝑖𝑔𝑟𝑎𝑝ℎ .successors(node) do
35 if succ ∉ visited then
36 visited.append(succ)
37 valid_succ.extend(get_valid_succssors(succ,

𝑐𝑙𝑖𝑔𝑟𝑎𝑝ℎ , visited))

D DETAILED EVALUATION OF NETBERT
We show the detailed evaluation results of mapping performance

of Mapper, in addition to § 7.3. We add another metric: mean re-
ciprocal rank (MRR). The reciprocal rank of a list of recommended
parameters is the multiplicative inverse of the rank of the first
correct answer. The mean reciprocal rank is the average of the
reciprocal ranks of all test cases. Higher MRR implies that the rec-
ommended parameters of Mapper are more accurate.

Software-Defined Network Assimilation SIGCOMM ’22, August 22-26, 2022, Amsterdam, Netherlands

Mapping Setting Models k in recall@top k (%) MRR1 2 3 4 5 6 7 8 9 10 20 30

Huawei-UDM

IR 41 52 61 66 69 74 76 78 79 80 90 93 0.5401
SimCSE 40 53 59 63 66 67 68 69 70 72 77 81 0.5148
SBERT 53 66 72 76 79 80 81 82 84 85 89 92 0.643

IR+SimCSE 43 61 68 74 75 77 79 80 81 82 89 92 0.5757
IR+SBERT 56 69 75 79 81 83 85 86 87 88 91 94 0.6737
NetBERT 57 69 74 78 80 84 85 86 86 87 91 94 0.6732

IR+NetBERT 58 71 78 81 83 85 86 87 88 89 93 95 0.6916

Nokia-UDM

IR 24 31 41 45 48 56 57 59 59 60 66 70 0.3498
SimCSE 20 27 31 33 37 38 39 39 39 42 45 48 0.2679
SBERT 34 35 38 44 49 49 49 52 52 52 58 53 0.3908

IR+SimCSE 24 31 35 40 42 43 46 48 48 48 57 61 0.3241
IR+SBERT 34 40 42 49 52 52 54 55 55 58 62 72 0.417
NetBERT 34 40 43 50 53 58 66 67 67 70 71 73 0.4322

IR+NetBERT 35 41 47 51 55 57 65 67 68 68 71 73 0.4407

Table 6:Mapper performance

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 SDN & Need for SNA
	2.2 Challenges of SNA
	2.3 Motivating NAssim's Design Decisions

	3 NAssim Overview
	3.1 VDM Construction Phase
	3.2 VDM-UDM Mapping Phase

	4 NAssim Parser Framework
	5 NAssim Validator
	5.1 Formal Syntax Validation
	5.2 Model Hierarchy Derivation and Validation
	5.3 Validation with Empirical Data

	6 NAssim Mapper
	6.1 Context Extraction
	6.2 Context Encoding/Matching with NetBERT
	6.3 Fine-tuning NetBERT

	7 Evaluation
	7.1 Prototype Implementation
	7.2 Evaluation of VDM Construction Phase
	7.3 Evaluation of VDM-UDM Mapping Phase

	8 Discussion
	8.1 Device Configuration Models
	8.2 Vendor-neutral Reference Frame
	8.3 Network Assimilation beyond SDN

	9 Related Works
	10 Conclusion
	References
	A Manual Snapshots
	B Tests for Parsing Completeness Validation
	C CGM Algorithm Details
	D Detailed Evaluation of NetBERT

