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ABSTRACT
Multi-user indoor localization is considered to be one of the most
useful wireless applications. Low latency and high robustness to
dynamic interference from surrounding people are essential require-
ments for multi-user localization. However, state-of-the-art (SOTA)
indoor localization systems cannot satisfy both requirements at
the same time. In this paper, we propose RIScan, a Reconfigurable
Intelligent Surface (RIS)-aided localization system that can achieve
both low latency and high reliability. We leverage RIS to perform
Wi-Fi beam scanning so all clients can figure out their direction
in a single scan. However, compared with traditional AP-based
systems, the introduction of RIS creates a more complicated signal
superposition at the receiver, preventing clients from directly ob-
taining target beams for direction derivation and localization. To
overcome this challenge, we fully utilize the reconfigurability of RIS
to endow target beams with distinguishing features, so that RIScan
can extract stable and accurate direction information from com-
plex and dynamic environments. RIScan is implemented in the real
system with our own developed 16 × 16 RIS prototype and COTS
Wi-Fi devices. Extensive experiments show that RIScan achieves a
median localization error of 47cm and 71cm in static and dynamic
environments with only two RIS anchors. Compared to the SOTA
methods, RIScan reduces the localization latency by more than an
order of magnitude.

CCS CONCEPTS
• Networks→ Location based services.

KEYWORDS
Reconfigurable Intelligent Surface, Smart Surfaces, RIS-aided Wi-Fi
Sensing, Multi-user Indoor Localization

Corresponding author: Qian Zhang.
Huangxun Chen participated in this research when she was a Researcher at Huawei.
She now joins HKUST (GZ) as an Assistant Professor.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SenSys ’23, November 12–17, 2023, Istanbul, Turkiye
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0414-7/23/11. . . $15.00
https://doi.org/10.1145/3625687.3625806

2 RISs
AP

Angular
Power 

Spectrum

scanning

Figure 1: Illustration of RIScan system in the museum sce-
nario.
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1 INTRODUCTION
Indoor localization is very helpful in many daily scenarios. For in-
stance, in museums, localization services can provide many exciting
functionalities. A group of visitors can quickly find the exhibits they
are interested in with indoor navigation. In addition, when they
walk to a certain showcase, the system can automatically display
detailed information. To avoid providing visitors with outdated or
even excessively wrong information, the system must be able to
operate with low latency and robust to complicated interference
caused by the movement of surrounding visitors.

Existing Wi-Fi localization systems can be broadly divided into
two categories, Channel State Information (CSI) based [19, 25, 43]
and Received Signal Strength Indicator (RSSI) fingerprint-based
[7, 24, 47] approaches. For CSI-based systems, Angle of Arrival
(AoA) and Time of Flight (ToF) are extracted from CSI with MUSIC
algorithm [26]. As the AP usually has more antennas than the end
device (2 antennas for the majority of smartphones), the CSIs are
usually measured and processed at the AP side to get high angular
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resolution. The processing capability of AP becomes a bottleneck
when there are a large number of localization requests, which in-
dicates that the latency will linearly increase with the number of
clients. The time cost of UbiLocate to localize a client is 1.5s [25]
with 3 APs, and the localization latency increases to 15s when
there are 10 clients. For RSSI fingerprinting approaches, a RSSI map
needs to be drawn through various measurements in space. Dy-
namic interference caused by surrounding movements will change
the pre-measured RSSI map so that the performance will degrade
significantly under complex interference. Overall, SOTA Wi-Fi in-
door localization systems can achieve decimeter-level accuracy in
a controlled lab setup, but to the best of our knowledge, none of
the systems can satisfy both low latency and high robustness to
environmental interference.

To bridge this gap, we present RIScan, a parallel multi-user in-
door localization system with a pair of Reconfigurable Intelligent
Surfaces (RIS). RIScan is inspired by the Radio Direction Finding
(RDF) technology [36], which is widely used in the navigation of
ships and emergency rescues. The working principle of RDF is to
steer the directional antenna on the radar and find the direction
with the highest signal strength at the receiver. In this paper, we
leverage RIS, a passive reflecting antennas array in which each
antenna can dynamically modulate the phases of reflected signals.
As shown in Figure 1, with well-designed configurations, RIS can
generate steerable Wi-Fi beams by reflecting radio waves emitted
from the AP. With RIS beam scanning, the clients can extract CSIs
from received packets to generate their own angular power spec-
trum (APS). Then the clients can indicate their directions viewed
from the RIS by finding the highest peak in the APS. In RIScan, we
call this direction as RIS angle of departure (RAoD). Since all
directions are scanned by the RIS each round, the RAoD of every
client can be determined within a single scan, and thus the local-
ization latency does not increase with the number of clients. Then,
the clients’ positions can be obtained by combining the direction
estimation results from two RIS anchors.

Despite the enormous advantage of client scalability, RIS-based
localization encounters more challenges than classical AP-based
localization. There are three parties in traditional AP-based local-
ization, the AP, the client, and the environment with static and
moving objects, while in RIS-based localization, one more party,
RIS, is involved. In principle, the key of localization is to accurately
identify the anchor signal from superimposed signals at the receiver.
The anchor signal is the AP-client direct path in AP-based case,
while it is the RIS-client path in RIS-based case. It is noted that
we need to handle more complicated signal superposition in RIS-
based localization, including AP-client direct path, the traditional
AP-Env-client multipath, the path caused by RIS configuration
RIS-client and the RIS-induced multipath RIS-Env-client. We
need to extract the RIS-client from the others to enable accurate
RIS-based localization.

More specifically, to achieve this target, we have to address the
following challenges. First, RIS-related paths are overwhelmed by
AP-client path and AP-Env-clientmultipath, which leads to RIS
beam direction finding failure, and we need to separate them out.
However, existing techniques cannot fully address this problem.
For example, SpotFi [19] extracts the anchor signal, AP-client

path based on its smaller ToF compared to other paths. In RIS-
based scenario, this method can not distinguish the anchor signal
RIS-client and AP-client path. MetaSight [41] is a RIS-based
solution to localize RFID tags. It modulates the RIS-client signal
into another frequency band for separation. However, it will re-
sult in substantial channel switching overhead of clients and thus
interrupt the communication between AP and clients. Thus, we
need to design a systematic scheme to extract RIS-client path
precisely. Second, there may be not only one path for the RIS beam
to arrive at the clients due to reflection and scattering, especially in
a complex environment. Some reflectors would redirect the signals
from RIS to the client even when the RIS is not steering towards
the client. In this paper, we call the RIS-Env-client path as RIS
multipath. The RIS multipaths will result in many confusing peaks
in the APS.

To tackle these challenges, our core idea is to leverage the con-
figurability of RIS to make the RIS-client path more prominent
than the others. Firstly, we design a pair of configurations with
a 180-degree phase difference to separate RIS-client from the
AP-client direct path and the static part of AP-Env-client. Then,
we comprehensively analyze the dynamic part of AP-Env-client
and design a RIS configuration sequence and a phase pattern de-
tection mechanism to suppress their impact on RIS beam direction
finding. Specifically, we classify the dynamic interferences into
three categories, i.e., surrounding interference, crossing the AP-
client path, and crossing the RIS-client path, and then observe the
difference between channel variation patterns caused by these inter-
ferences and that caused by RIS to drive the design. Finally, we delve
into the formation of RIS-Env-client paths and design a special
RIS configuration sequence to eliminate its effect. Specifically, we
observe that RIS multipaths are created under a specific condition.
Thus, we configure RIS strategically to destroy the conditions while
preserving the stable RIS-client path across all configurations.

We implement RIScan using an AP, two customized RISs and
several clients. The AP and clients are mini-PCs equipped with
commodity Wi-Fi NICs. The key mechanisms are validated with
extensive experiments in two different environments. The results
show that RIScan achieves a median localization error of 47cm
and 71cm in static and dynamic environments with only two RIS
anchors. RIScan is at least 12.5× faster than the SOTA when simul-
taneously localizing more than ten users.

Our contributions can be summarized as follows:
• To the best of our knowledge, RIScan is the first Wi-Fi-based
multi-user indoor localization system that has low latency
and is robust to dynamic interference.

• We take full advantage of RIS’s capability to customize the
wireless environment. We design a novel algorithm to ex-
tract the RIS component from the superimposed channel
and design mechanisms to suppress environmental distur-
bance, which makes the systems robust against dynamic
interference and confusing multipaths. These mechanisms
can inspire other Wi-Fi sensing applications and improve
their robustness.

• We prototype RIScan with COTS Wi-Fi devices and cus-
tomized RIS hardware. Extensive experiments in two indoor
environments demonstrate excellent RIScan performance in
multi-user scenarios.
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2 SYSTEM MODEL AND CHANNEL MODEL
2.1 System Model
RIScan comprises three entities: a Wi-Fi AP, two RISs, and several
clients. The Wi-Fi AP and clients are mini-PCs equipped with com-
modity Intel 5300 NICs. RISs reflect and modulate the radio wave
transmitted by the AP. With proper configurations, RISs can gen-
erate steerable reflective beams and execute a RIS beam scanning
mechanism. Then the clients receive these packets and extract CSIs.
Based on a series of CSI, the clients can determine their RAoDs.
Then clients can estimate their locations by combining the RAoDs
from two RISs with triangulation.

2.2 Channel Model
The channel model here is to reveal how RIScan can assist the
localization. In this paper, we introduce a RIS with 𝑀 columns
and 𝑁 rows of reflecting antennas. For simplicity, we first consider
the RIS with only one row. Each antenna element will produce a
controllable transmission path, called a RIS path. Considering the
𝑖-th antenna element, a RIS path consists of three stages: as shown
in Figure 2, the signal first travels from the AP to this element,
which is called the AP-RIS path or AR path; then it is reflected
by the antenna element, where the reflection loss is denoted by Γ
which is the same for each element; at the same time, each element
will shift reflected signal a configurable phase offset 𝜙𝑐 (𝑖); at last, it
travels from this RIS element to the client, called the RC path. We
can express the channel of the 𝑖-th RIS path as:

ℎ𝑅𝐼𝑆 (𝑖) = 𝐴𝐴𝑅 (𝑖)𝑒− 𝑗𝑘𝑑𝐴𝑅 (𝑖 )Γ𝑒 𝑗𝜙𝑐 (𝑖 )𝐴𝑅𝐶 (𝑖)𝑒− 𝑗𝑘𝑑𝑅𝐶 (𝑖 )

= 𝐴𝐴𝑅 (𝑖)𝐴𝑅𝐶 (𝑖)Γ𝑒− 𝑗𝑘 (𝑑𝐴𝑅 (𝑖 )+𝑑𝑅𝐶 (𝑖 ) )𝑒 𝑗𝜙𝑐 (𝑖 ) ,
(1)

where𝐴𝐴𝑅 (𝑖) and𝐴𝑅𝐶 (𝑖) are the attenuation factor of the AR path
and RC path for the 𝑖-th RIS path, respectively; 𝑑𝐴𝑅 (𝑖) and 𝑑𝑅𝐶 (𝑖)
is the length of these paths; 𝑘 is the wave number, i.e., 𝑘 = 2𝜋/𝜆.
Let 𝐴(𝑖) = 𝐴𝐴𝑅 (𝑖 )𝐴𝑅𝐶 (𝑖 )Γ denote the amplitude of 𝑖-th RIS path.
Then we can model the whole RIS channel as:

ℎ𝑅𝐼𝑆 =

𝑀∑︁
𝑖=1

𝐴(𝑖)𝑒− 𝑗𝑘 (𝑑𝐴𝑅 (𝑖 )+𝑑𝑅𝐶 (𝑖 ) )𝑒 𝑗𝜙𝑐 (𝑖 ) . (2)

Without loss of generality, we assume the distance between RIS
and client is far, which meets the requirement of far-field condi-
tions [18]. Then we can assume that the RC paths of all RIS elements
are parallel. Under this assumption, the difference in path length
between two adjacent RC paths is 𝑑 sin(𝑅𝐴𝑜𝐷), where 𝑑 is the spac-
ing between the elements on RIS. Then the phase of 𝑖-th RIS path
can be written as:

𝜙𝑅𝐼𝑆 (𝑖 ) = −𝑘 (𝑑𝐴𝑅 (𝑖 ) + 𝑑𝑅𝐶 (1) − (𝑖 − 1)𝑑𝑠𝑖𝑛 (𝑅𝐴𝑜𝐷 ) ) + 𝜙𝑐 (𝑖 ) . (3)

Obviously, if we align the phases of all RIS paths, the amplitude of
ℎ𝑅𝐼𝑆 becomes maximum which can be achieved by setting a set of
appropriate 𝜙𝑐 .

In practical deployment, the location of the AP and RIS are
fixed so we can easily obtain 𝑑𝐴𝑅 . Hence, we can derive the RAoD
by maximizing |ℎ𝑅𝐼𝑆 |. However, for a 𝑏-bit RIS, there are 2𝑏𝑀𝑁

different configurations, which is a huge search space. Thus, an
exhaustive search is not a feasible solution. Besides, the target of
RIScan is to localize multiple clients simultaneously, which makes

RIS

AP Client

AR path RC path
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Figure 2: The channel model in RIScan.

it impractical to search for an optimal RIS configuration for each
client device.

To make things worse, the indoor wireless channel is made up
of multiple propagation paths in the environment. Besides the AP-
client (AC) direct path, radio waves can also arrive at the receiver by
reflection, diffraction or scattering. Hence, the composite channel
observed by the client can be expressed as:

ℎ𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 = ℎ𝐴𝐶 + ℎ𝑚𝑢𝑙𝑡𝑖𝑝𝑎𝑡ℎ +
𝑀∑︁
𝑖=1

𝐴(𝑖)𝑒 𝑗𝜙𝑅𝐼𝑆 (𝑖 ) , (4)

where ℎ𝐴𝐶 is the direct channel from AP to client, ℎ𝑚𝑢𝑙𝑡𝑖𝑝𝑎𝑡ℎ is the
combination of all multipath signals. Therefore, the RIS component
is buried in other propagation paths. In addition, the AC path and
multipath profile will change with the user position and other dy-
namic interferences in the environment. Hence, we cannot directly
estimate the RAoD by maximizing the received signal strength.

3 SYSTEM OVERVIEW OF RISCAN
The overall procedure of RIScan is shown in Figure 3. First, a host
sends a synchronization signal to the AP and a RIS. Then, the AP
starts broadcasting packets, and the RIS modulates the incoming
radio waves and generates reflective beams with well-designed
configurations. These steerable Wi-Fi beams sequentially scan the
environment and induce channel changes. During the scanning,
the clients extract and process a series of CSI from received packets
simultaneously. The overwhelmed RIS components can be extracted
from the superimposed channels by calculating the difference of
CSI affected by a pair of special configurations. Hence, the clients
can obtain their own APSs.

To improve the system robustness in multi-user scenarios, the
dynamic interferences need to be suppressed. To achieve that, a
special configuration sequence is designed. With it, weak interfer-
ences can be suppressed by channel differences directly. In terms
of severe interferences (e.g., users crossing the AC path), we design
a phase pattern detection mechanism for it. This mechanism can
distinguish the desired RAoD estimate from multiple misleading
RAoD estimates due to interferences.

However, reflections in the environment can also cause confusing
RIS multipaths. A special beam scanning sequence is designed to
destroy the formation conditions of these reflections. If the clients
detect more than one RIS-related path signals with the phase pattern
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Figure 3: The system overview of RIScan.

detection mechanism, the system will apply this beam scanning
sequence to eliminate the undesired RIS multipaths.

To avoid interference between RISs, RISs cannot operate beam
scanning at the same time. Therefore, when the localization service
begins, the host will notify the first RIS to start beam scanning and
wait for it to complete before telling the next RIS to start. For each
client, the location can be determined by combining the estimated
RAoDs from two separate RISs with triangulation. The details of
the key mechanisms will be mentioned in the following section.

4 ROBUST DIRECTION ESTIMATION
In this section, we will first introduce how RIScan achieves direc-
tion (RAoD) estimation in a static environment. Next, a special set
of configurations and a phase pattern detection mechanism are
proposed to improve RIScan’s robustness to dynamic interference.
At last, we eliminate confusing RIS multipaths caused by reflection.

4.1 RIS Beam Scanning
Here, we illustrate how RIScan performs RAoD estimation. For
simplicity, we first consider there is only the RIS component ar-
riving at the user device. In Section 2.2, we mentioned that the
search space of maximizing |ℎ𝑅𝐼𝑆 | is huge, which will cause a large
localization latency. Inspired by direction finding technology [36],
we can shrink the search space by executing beam scanning. The
idea is that we do not derive RAoD by finding the optimal configu-
ration but search through all possible directions 𝜃 to generate an
APS and determine which is the RAoD. In this way, we reduce the
search space from 2𝑏𝑀𝑁 to 2𝛽 + 1, if we search among [−𝛽, 𝛽] at 1°
granularity. Furthermore, the search time does not increase with
the number of clients, which brings RIScan the benefits of finding
RAoDs for multiple clients at one round of scan.

O I

Q

′

O I

Q

′

(a) (b)

( )

( )

Figure 4: The IQ diagram of channel in (a) static environment
and (b) environment with dynamic interference.

To achieve RIS beam scanning (RBS), we align the phase of all
RIS paths at a certain direction 𝜃 . For 2D beam scanning, the RBS-
codebook of a 2-dimension RIS is:

𝜙𝑐 (𝑚,𝑛) = 𝑘 [𝑑𝐴𝑅 (𝑚,𝑛) + 𝑑𝑅𝐶 (𝑛/2, 1) − (𝑚 − 1)𝑑𝑠𝑖𝑛𝜃 ] + 𝜙0 (5)

where 1 ≤ 𝑚 ≤ 𝑀, 1 ≤ 𝑛 ≤ 𝑁 and 𝜙0 is a phase constant that
does not affect the corresponding |ℎ𝑅𝐼𝑆 | (it will be used in the
later section). When the RIS steers the beam direction from −𝛽
to 𝛽 , the clients measure the signal strength and determine the
direction 𝜃 with the largest signal strength to be its RAoD, i.e.,
𝑅𝐴𝑜𝐷 =𝑚𝑎𝑥𝜃 ( |ℎ𝑅𝐼𝑆 (𝜃 ) |).

4.2 RIS Component Separation
In Section 4.1, we only consider the RIS channel. However, in prac-
tical situations, the received signals also contain the AC direct path
and multipaths. Therefore, the received signal strength may not
be maximum when the RIS steers at the RAoD. Our key insight
is extracting RIS components by altering RIS configurations and
canceling the invariant components. Here we assume that the en-
vironment is static where the AC and multipath signals are stable
(we leave the dynamic interference case to Section 4.3). Remember
the phase constant 𝜙0 in Section 4.1. It’s a phase constant adding to
all RIS elements and notes that no matter what its value is, it won’t
affect the alignment of the RIS paths and the corresponding |ℎ𝑅𝐼𝑆 |.
We let the AP send two packets to the client which we set 𝜙0 to 0
and 𝜙 ′0, respectively. Then the client estimates the channel ℎ0 and
ℎ𝜙 ′

0
, which are as follows:

ℎ0 (𝜃 ) = ℎ𝐴𝐶 + ℎ𝑚𝑢𝑙𝑡𝑖𝑝𝑎𝑡ℎ + ℎ𝑅𝐼𝑆 (𝜃 )

ℎ𝜙 ′
0
(𝜃 ) = ℎ𝐴𝐶 + ℎ𝑚𝑢𝑙𝑡𝑖𝑝𝑎𝑡ℎ + ℎ𝑅𝐼𝑆 (𝜃 )𝑒 𝑗𝜙

′
0

(6)

As the static environment assumption, ℎ𝐴𝐶 and ℎ𝑚𝑢𝑙𝑡𝑖𝑝𝑎𝑡ℎ won’t
change. By subtractingℎ𝜙 ′

0
(𝜃 ) fromℎ0 (𝜃 ), we can cancel the AC and

multipath components and get the differential of RIS component:

|Δℎ(𝜃 ) | =
���ℎ0 (𝜃 ) − ℎ𝜙 ′

0
(𝜃 )

��� = |ℎ𝑅𝐼𝑆 (𝜃 ) |
���1 − 𝑒 𝑗𝜙 ′

0
��� . (7)

For a given 𝜙 ′0,
���1 − 𝑒 𝑗𝜙 ′

0
��� is a constant. Δℎ(𝜃 ) has the maximum

magnitude when |ℎ𝑅𝐼𝑆 (𝜃 ) | is maximized. Then, RIScan can steer
signals at different directions 𝜃 and each client can find the 𝜃 that
maximizes |Δℎ(𝜃 ) |.

A remaining problem is how to choose the best 𝜙 ′0? In RIScan,
we set 𝜙 ′0 to 𝜋 for two reasons. The first reason is that the channel
difference |ℎ0 (𝜃 )−ℎ𝜙 ′

0
(𝜃 ) | has the maximum value 2|ℎ𝑅𝐼𝑆 (𝜃 ) | when

𝜙 ′0 = 𝜋 . As shown in Figure 4 (a), changing𝜙
′
0 is equivalent to vector

rotation, and its rotation trajectory forms a circle with |ℎ𝑅𝐼𝑆 | as
the radius. Since the other components ℎ𝑜𝑡ℎ𝑒𝑟𝑠 (including ℎ𝐴𝐶 and
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Figure 5: The RSS of raw channel estimates for 30 subcarriers and the corresponding final APS.

ℎ𝑚𝑢𝑙𝑡𝑖𝑝𝑎𝑡ℎ) in the received channel are the same, the amplitude
of the differential channel is the length of the chord of the circle.
When the phase is set to 𝜋 , its value reaches the maximum which is
the diameter of the circle. The larger |ℎ0 (𝜃 ) −ℎ𝜙 ′

0
(𝜃 ) | means RIScan

can better combat electromagnetic noise in actual deployment and
improve the working range. Second, almost all phase-shifting-based
RIS designs support the two configurations of 0 and 𝜋 .

4.3 Dynamic Interference Suppression
However, in the multi-user scenario, the movement of surrounding
persons will change the wireless environment. These movements
will create some dynamic, unpredictable multipaths which will
introduce unwanted interferences. Assume we set 𝜙 ′0 to 0 at time
𝑡1 and 𝜋 at time 𝑡2, then we separate the RIS component as the
following equation:

|Δℎ(𝜃 ) | =|ℎ𝐴𝐶 (𝑡1) − ℎ𝐴𝐶 (𝑡2) + ℎ𝑚𝑢𝑙𝑡𝑖𝑝𝑎𝑡ℎ (𝑡1)−
ℎ𝑚𝑢𝑙𝑡𝑖𝑝𝑎𝑡ℎ (𝑡2) + 2ℎ𝑅𝐼𝑆 (𝜃 ) |.

(8)

As shown in Figure 4(b), in this situation, the other path compo-
nents can’t be canceled and |ℎ𝑅𝐼𝑆 (𝜃 ) | is not directly correlated with
|Δℎ(𝜃 ) |.

In order to achieve a robust localization system, we classify the
dynamic interferences into three categories, including surrounding
interference, crossing AC path, and crossing RC path. Then we ana-
lyze their characteristics and design the corresponding algorithms.

4.3.1 Surrounding interference. Surrounding interference is caused
by people walking near the system but not crossing the AC or
RC path. Our key observation is that surrounding interference
will not cause abrupt channel changes. There are two reasons for
this. First, this interference is caused by the variations of multi-
path reflected by people walking around. Compared with the AC
path, multipaths have longer transmission distances and larger
reflection loss, so they have a weaker influence and won’t cause
large changes in channel estimates. Second, compared with the
packet rate of Wi-Fi devices, human motion is slow. In other words,
|ℎ𝑚𝑢𝑙𝑡𝑖𝑝𝑎𝑡ℎ (𝑡1) − ℎ𝑚𝑢𝑙𝑡𝑖𝑝𝑎𝑡ℎ (𝑡2) | is very small when |𝑡1 − 𝑡2 | is
small. Based on this observation, we design a special configuration
sequence to eliminate the surrounding interference.

Since the surrounding interference does not change |ℎ𝐴𝐶 |, we
only need tominimizeℎ𝑚𝑢𝑙𝑡𝑖𝑝𝑎𝑡ℎ (𝑡1)−ℎ𝑚𝑢𝑙𝑡𝑖𝑝𝑎𝑡ℎ (𝑡2), then |Δℎ(𝜃 ) | ≈
2|ℎ𝑅𝐼𝑆 (𝜃 ) |. In order to achieve this goal, we arrange the two RIS
phase configurations for 𝜃 (𝜙0 = 0 and 𝜙0 = 𝜋 ) consecutively. The
optimal configuration sequence of beam scanning among [−𝛽, 𝛽]
at 1° granularity is shown in Figure 6. Since a packet corresponds

Packet #
……

4 + 24 + 144 − 14321

(− , ) (− , ) (− + , ) (− + , ) ( − , ) ( − , ) ( , ) ( , )

Figure 6: The optimal configuration sequence.

to a configuration, the time interval of these two configurations
|𝑡1 − 𝑡2 | is just the 1/packet rate.

Figure 7(a) shows the relationship between packet rate and the
interference suppression performance. The blue points are the raw
channel estimations and differential channels of two adjacent pack-
ets with a packet rate of 50Hz, 100Hz, and 1000Hz are shown in
green, yellow, and red points, respectively. In the IQ diagram, the
closer a point is to the origin, the smaller its magnitude. We can
see that the points (except for blue) are centered near the origin,
and the higher the packet sending rate, the closer they are to the
origin, and thus the weaker the impact of surrounding interfer-
ence on our system. In RIScan, we set the packet rate to 1000Hz,
which can be achieved by commercial COTS Wi-Fi NIC. Hence,
the multipath profile can be considered to be stable within 1ms
and ℎ𝑚𝑢𝑙𝑡𝑖𝑝𝑎𝑡ℎ (𝑡1) − ℎ𝑚𝑢𝑙𝑡𝑖𝑝𝑎𝑡ℎ (𝑡2) ≈ ®0. As shown in Figure 5 (a),
affected by surrounding interference, the received signal strength
(RSS) fluctuates. In the APS, this interference is well suppressed by
our designed configuration sequence. Here, we add up the APS of
all 30 subcarriers as the final APS.

(a) (b)

Figure 7: The relationship between the interference suppres-
sion performance and packet rate. (a) Surrounding interfer-
ence. (b) Crossing AC path.

4.3.2 Crossing the AC path. Different from the surrounding in-
terference, walking across the AC path will bring drastic channel
change. Since the AC path is usually the strongest component in the



SenSys ’23, November 12–17, 2023, Istanbul, Turkiye C. Li et al.
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Figure 8: Eliminating themisleading peak based on the phase
pattern characteristics.

combined channel, blocking it will vary the phase and amplitude
significantly in a very short time. Therefore, as shown in Figure
7(b), though most points are still concentrated near the origin, some
aberrant points cannot be removed. According to Equation 8, this
drastic change in AC path will increase the magnitude of the dif-
ferential channel and produce a misleading peak in APS which
confuses the direction estimation (as shown in Figure 5 (b)).

To deal with this case, we observe that the misleading peaks
and RIS peak have different phase patterns. Recall the optimal RIS
configuration sequence in Figure 6, 𝜙0 is set to 0 and 𝜋 alternately.
For a certain beam direction, two configurations with the𝜙0 of 0 and
𝜋 will cause the superimposed channel to rotate at a certain angle in
the IQ diagram (Figure 4(a)), that is, the phase of the superimposed
channel will change. As shown in Figure 8, this pattern is especially
noticeable when the beam is scanned close to the client because the
energy of the RIS component gets maximum at that time. However,
the phase patterns of misleading peaks are usually random. Thus,
we apply phase pattern detection to recognize the RIS peak. First,
we select 3 peaks with the largest amplitude in the APS. For each
peak, to detect its phase pattern, we extract channel estimations
around this peak with a length of 𝑁 and then calculate the phase
difference between the adjacent phases. Next, we just count the
number of alternative signs in this phase difference sequence and
denote it by 𝑙 . If the ratio of 𝑙 to 𝑁 is larger than a threshold (80%
in RIScan), then this peak is considered a RIS peak.

4.3.3 Crossing RC path. For the interference caused by crossing
the RC path, the human body will absorb part of the RF energy
reflected by the RIS and introduce dynamic disturbance. In this
case, the RIS peak will be destroyed and lead to direction estimation
failure. Note that only when the beam steers close to the client,
persons moving across the RC path will disturb direction estimation.
Thus, the probability of this interference is low. What’s more, since
the user will not move a large distance in a short period of time, the
RAoD will not change greatly. Therefore we can apply a clustering
algorithm to exclude invalid measurements.

Note that the interference caused by crossing AP-RIS (AR) path
is similar. Since the locations of AP and RISs are fixed, in actual
deployment, we can place the AP at a higher position to avoid
blocking the AR path, such as installing the AP and RISs on the
ceiling.

4.4 Confusing RIS multipath Elimination
The RC path is not always the only path from RIS to the client. For
example, some reflectors in the environment would redirect the

x
y

z
( , 0)

( ′, ′)

Scanning 

RIS multipath 

Client 1
RIS

RC path

Client 2

Reflector

ℎ

(a) (b)
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Figure 9: (a) Illustration of RIS multipath. (b) The pitch angle
𝛼 which lifts the beam up along the y-axis. (c) The variation
of the pitch angle 𝛼 .

signals from RIS to the client even when the RIS is not steering
towards the client, as shown in Figure 9 (a). To differentiate this
type of multipath from the multipath signals in Figure 2, we call it
RIS multipath. In the indoor environment, small spaces and various
furniture create conditions for RIS multipath. These RIS multipaths
will generate confusing peaks in the APS. In the worst case, one
RIS multipath may have the largest amplitude when the RC direct
path between the RIS and the client is blocked by some obstacles.
Note that phase pattern detection in the previous section cannot be
used to eliminate them because RIS multipaths also have the same
phase pattern as the RC path.

To suppress RIS multipaths, we are inspired by the observation
in ArrayTrack [42] that when the transmitter, the receiver, or the
objects between them move slightly, the reflection path usually
changes significantly while the direct path is stable. The main
reason for this phenomenon is that the condition to generate a
stable reflection path is hard to satisfy in a real deployment. What’s
more, the conditions to generate stable RIS multipaths are even
stricter. Recall that the RIS beam is composed ofmany phase-aligned
paths reflected by antenna elements on RIS, and thus its pattern
is fragile. In general, to create strong RIS multipaths, it needs to
meet two conditions simultaneously. The first is that the reflecting
surface should be smooth. When the RIS beam strikes an uneven
surface, scattering will destroy its directivity. The second is that the
position of the RIS, reflector, and client device needs to satisfy the
law of reflection, that is, the incident angle is equal to the reflection
angle.

Based on this observation, we proactively change the configura-
tions of RIS to eliminate RIS mulipaths. We prevent the formation of
strong RIS multipaths by applying some special perturbations dur-
ing beam scanning. Then, we could identify the RC path by finding
almost invariant peaks in the two measurements. More specifically,
in the previous sections, the RIS beam is scanned in the horizontal
plane, and now we introduce a pitch angle 𝛼 which lifts the beam
up along the y-axis, as shown in Figure 9 (b). And the pitch angle
varies with beam scanning direction 𝜃 (Figure 9 (c)). It is a triangle
wave with a maximum ℎ and a period 𝑝 . In RIScan, we set ℎ and 𝑝
to 5° and 20°, respectively. This scheme has two advantages. First,
different from ArrayTrack [42], RIScan does not require the user to
actively cooperate with the system to move a certain distance to
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Figure 10: The impact of the number of RIS element

distinguish RIS multipaths. Second, the pitch angle does not change
the projection on the horizontal plane, which indicates that this
scheme will not distort the RAoD.

5 PRACTICAL ISSUES OF RISCAN DESIGN
5.1 RIS Element Number Trade-off
The number of RIS elements significantly impacts the angular res-
olution of RAoD estimation. For a N element linear array with
uniform spacing, the array factor(AF) [8] can show the RIS beam
pattern and the relationship between the half-power bandwidth
(HPBW) and beam direction 𝜃𝑏 . The simulation results depicted
in Figure 10 indicate that when the number of RIS elements in-
creases, the HPBW decreases, and the angular resolution improves.
Additionally, more RIS elements will enhance the energy of the
RIS path and expand the working range. However, it also escalates
the complexity of the control circuit and the overall manufacturing
cost. Therefore, to strike a balance, 16 elements are chosen for each
dimension of the RIS.

In addition, though RIS can generate beams covering the whole
180°, it is observed that the HPBW expands as the beam direction
|𝜃𝑏 | increases, and becomes excessively large at certain extreme
beam directions (for instance, those greater than 60°). Besides, al-
though the localization delay of RIScan will not increase with the
number of clients, it will increase with the number of scanned beam
directions. Consequently, to enhance the precision of RAoD esti-
mation and reduce the time overhead, the beam scanning direction
is restricted to a range of [−60°, 60°] at 1° granularity. It is worth
noting that most beamforming-related works[12, 41] limit the beam
angle to this range to obtain greater gain.

5.2 RIS Quantization Error
In the previous sections, we assume that RIS can provide continuous
phase control. Although smart surfaces that can achieve continuous
phase control [31] have been proposed, they have large response
latency and increase the complexity of control circuit design, mak-
ing them less practical. Therefore, many prototypes with discrete
phase configurations [12, 13, 53] have attracted the attention of
researchers. Nevertheless, these designs will introduce quantization
errors. For RIScan, we need to consider two factors, the directivity
reduction and beamforming error caused by quantization error.
The reduction of directivity for 1- to 3-bit designs is 3.87dB, 0.88dB,
and 0.21dB, respectively [39]. The 2-bit setting offers the largest
marginal gain with an acceptable loss. In addition, the quantization
error will not lead to an apparent angular resolution degradation
[38] when there are 16 elements on each RIS dimension. Since more

discrete configurations will increase the cost of the control circuit,
we choose to design a 2-bit smart surface.

5.3 Elminate Phase Distortions for COTS Wi-Fi
Device

RIScan aims to achievemulti-user indoor localization on commodity
user devices. However, in practical deployments, the CSI extracted
by receivers carries a time-varying random phase offset 𝑒− 𝑗𝜃𝑜𝑓 𝑓 𝑠𝑒𝑡

due to the lack of accurate synchronization between the transmitter
and receiver. This makes the RIS component separation mentioned
in Section 4.2 fail. The distorted CSI can be expressed as:

ℎ𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑒𝑑 = 𝑒− 𝑗𝜃𝑜𝑓 𝑓 𝑠𝑒𝑡 (ℎ𝐴𝐶 + ℎ𝑚𝑢𝑙𝑡𝑖𝑝𝑎𝑡ℎ + ℎ𝑅𝐼𝑆 ) . (9)

Observing that this random phase offset is equal on different an-
tennas of the same receiver, the works [35] and [50] use a phase
difference to cancel it. The authors of [50] have demonstrated that
when there is only one length-varying reflected path in the envi-
ronment and its attenuation is stable, the variation of this phase
difference of the overall channel roughly matches changes in the
length of this path. However, there is more than one reflection path
in our situation. Without loss of generality, we can approximate
that the path reflected by each RIS antenna has the same attenu-
ation due to their close path lengths and identical reflection loss.
Then these RIS element paths can be considered as a combined
reflection path. Then recall the configurations pair used in Section
4.2, they differ only in phase and have the same attenuation.

Hence, we can use the phase difference between two antennas
as the corrected phase. Note that 𝑒− 𝑗𝜃𝑜𝑓 𝑓 𝑠𝑒𝑡 will not distort the
amplitude of the overall channel. So we modify distorted CSI as:

ℎ
𝑚𝑜𝑑𝑖𝑓 𝑖𝑒𝑑

= |ℎ
𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑒𝑑

(𝑅𝑋1) |𝑒 𝑗 (𝜃 (𝑅𝑋1 )−𝜃 (𝑅𝑋2 ) ) , (10)

where 𝑅𝑋1 and 𝑅𝑋2 are two antennas of the receiver. Then, the
energy of the RIS component can be extracted successfully from
commercial Wi-Fi devices.

6 IMPLEMENTATION
6.1 RIScan Hardware
RIScan hardware comprises customized RISs and FPGA-based con-
trol circuits, as shown in Figure 11. We design the RIS according to
the design principle in [12]. We implement our smart surface with
2-bit phase configurations. Each antenna element has a three-layer
structure, the upper patch, the slot-loaded layer, and the ground.
The key component is the middle layer which contains five Sky-
works 𝑆𝑀𝑃1340 − 040𝐿𝐹 PIN diodes operating at frequencies from
10MHz to 10GHz. By setting the voltage of two DC biasing lines to
−0.9V or 0.9V, these PIN diodes switch between ON and OFF states
and provide four different phase offsets (i.e., 0, 𝜋/2, 𝜋 , and 3𝜋/2 ).
We manufactured our smart surface with a standard 𝑅𝑜𝑔𝑒𝑟𝑠4350𝐵
substrate. The central frequency is 5.5GHz. The three-layer struc-
ture enlarges the bandwidth to 600MHz, which makes the working
band cover the whole 5GHz Wi-Fi band. The size of our smart sur-
face is 31𝑐𝑚 × 31𝑐𝑚 × 0.4𝑐𝑚, which allows it to be hidden behind
upholstery (e.g., paintings).

There are 16 × 16 antenna elements in our smart surface, and
it needs 16 × 16 × 2 = 512 control signals. We customized and
implemented an FPGA-based control circuit with 512 independent
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Figure 11: Prototype of RIScan.

Voltage 
converter

PC

FPGA chip

SSH

UART

AP

01001110……

Voltage 
converter

0

1

0

0

0.9V

-0.9V

0.9V

0.9V

Sync signal

Sync signal

…
…

Figure 12: Illustration of RIScan’s circuit architec-
ture.

control ports. We use a 𝐾𝑖𝑛𝑡𝑒𝑥 7𝐾325 FPGA chip to generate the
control signal of each IO port. The latency for this FPGA chip to
update all the IO ports is at a microsecond level and guarantees the
fast configuration switch in Section 4.3. Since the output voltage
of the FPGA chip does not match with the PIN diodes, we design
a voltage conversion circuit, on which the key components are
two transistors,𝑀𝑀𝐵𝑇 3904 and𝑀𝑀𝐵𝑇 3906. The smart surface is
connected to the control circuit via FPC lines.

For power consumption, since the smart surface is a passive
device that only reflects RF energy from the environment, all the
power consumption comes from the FPGA-based control board.
The static control board draws around 90mA from 12V (the power
is around 1.08W). When providing 512 independent control signals,
the measured average power is about 2W, which is about 1/6 of
the power consumption of a typical AP[1, 2]. The cost to manu-
facture a RIS system (including the control circuit) is around $350,
of which the IC components and PCB manufacturing each cost
about $175. Hence, the total system which includes two RISs costs
around $700. However, the cost of PCB manufacturing can be sig-
nificantly reduced by using 𝐹𝑅4 substrate instead of 𝑅𝑜𝑔𝑒𝑟𝑠4350𝐵.
For a RIS, the PCB manufacturing cost can be reduced to $58. For
large-scale production, the manufacturing cost of PCB and the price
of IC components will be greatly reduced, and the cost of the entire
system will be reduced to approximately $340 (the cost of each RIS
is approximately $170). Although the cost of deploying RIS is some-
what high, it is worth noting that RIS is proposed as an important
technology in 6G communication, which means that it will be a
common communication infrastructure in the future. Therefore,
RIScan can reuse RISs deployed for communication purposes to
achieve multi-user localization.

6.2 Client and AP
The clients and AP are implemented via min-PCs with commercial
Intel 5300 network cards. In RIScan, we only require that the AP
has one antenna and the clients have two antennas. Note that the
most common commercial Wi-Fi devices (e.g., smartphones) are
equipped with two antennas. We collect the CSI of each packet
with the CSI Tool [14]. We evaluate RIScan and baselines in Wi-Fi
channel 140, with a central frequency of 5.7GHz and a bandwidth
of 20MHz. The results can be generalized to other channels.

6.3 Synchronization
Since RIScan collects a series of CSI under different RIS configura-
tions to estimate RAoD, the clients should be synchronized with
the RIS so that they are aware of the current configuration. In our
implementation, a PC connects with the AP via gigabit Ethernet and
communicates to the RIS control circuits with UART. The clients
are set in listening mode. When the PC sends a trigger signal to the
AP and the RIS controller simultaneously, the AP begins to send
Wi-Fi packets and the RIS starts to execute a preset configuration
sequence with the same rate of 1000Hz. Therefore, when the first
packet is received by the clients, it indicates the start of the RIS
configuration sequence, and then the following packages and RIS
configurations are corresponding.

7 EVALUATION
In this section, we conduct extensive experiments to demonstrate
the effectiveness of RIScan. First, we introduce the detailed experi-
mental setting and the baselines we compared. Then, we evaluate
the end-to-end performance of RIScan in the static environment.
Next, we evaluate how well RIScan handles interferences that are
unique to multi-user scenarios. Specifically, we verify RIScan’s
performance against interference among users’ Wi-Fi devices in
Section 7.3 and interference caused by other users (humans) in
Section 7.4, respectively. Finally, we assess the RIScan’s localization
latency in multi-user scenarios in Section 7.5.

7.1 Experiment Setup
Experiment Scenarios: To evaluate RIScan, we deploy our system
in two different spaces. The first space is an ideal one where all
testing positions have the Line-of-Sight (LoS) paths. As shown in
Figure 13 (a), the 6.5 × 13 m room is spacious and has a minor
multipath effect. One AP and two RISs are deployed on one side
of the room. These two RISs are separated by 2 m and placed 2 m
away from the AP on both sides. The client device is iteratively
deployed at 40 different testing locations covering an area of 4 ×
7𝑚 for data collection. The spacing of testing locations is set to
1m, and the maximum distance between the client and a RIS is
10 m. Note that we also evaluate the system performance with
interference among users’ Wi-Fi devices and interference caused by
other users (humans) in this room under different settings which
will be specified in corresponding sections.
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Figure 13: Experiment setup. (a) A simple spacious space that spans
84.5𝑚2. (b) A complex messy space that spans 40𝑚2.

As shown in Figure 13 (b), the second space is much more chal-
lenging, which contains two small rooms separated by a wall. In
both rooms, there are various furniture and sundries that create
rich multipaths. We deploy the RIScan system in the outer room
with 12 testing locations while the other 20 testing locations is set
in the inner room. The spacing of testing locations is set to 0.5 m.
The inner room can be considered as a typical NLoS scenario.

Comparison with Baselines: We reproduce two SOTA indoor
localization systems, SpotFi [19] and UbiLocate [25], as our base-
lines. Both of them leverage Wi-Fi CSI to estimate the client’s
location. Spotfi applies a 2D MUSIC algorithm to estimate AoA and
achieve decimeter-level localization with at least 3 APs. UbiLocate
combines AoA and ToF to achieve localization with an improved
AoA estimation algorithm and a modified Fined Timing Measure-
ment(FTM) protocol. Without modifying hardware and protocols,
their localization algorithm can run with only AoA information.
In our experiments, both baselines are implemented using several
mini-PCs equipped with Intel 5300 NICs. As shown in Figure 13,
both Spotifi and UbiLocate employ 3 APs to localize clients, while
RIScan only employs one AP.

7.2 RIScan’s Overall Performance
In this section, we first demonstrate RIScan’s overall end-to-end
performance in two static scenarios and compare its performance
with baselines.

7.2.1 LoS Scenario. We first evaluate our system under the LoS
scenario as shown in Figure 13 (a). The cumulative distribution
functions (CDF) of the angular estimation errors and localization
errors for all systems are shown in Figure 14 (a) and Figure 14
(b), respectively. For angular estimation, RIScan achieves a median
error of 1.3 degrees, while UbiLocate and Spotfi have a significantly
higher median error of 5.2 and 5.4 degrees, respectively. In addition,
we can observe that RIScan gets a more stable performance where
the maximum error of 90% measurements is less than 3.9 degrees
compared to that of UbiLocate and Spotfi at 18 degrees and 24
degrees, respectively. We attribute the improvement to the high
angle resolution beam created by all reflective RIS antennas, as
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described in Section 4.1. Based on the precise angle estimation,
RIScan achieves a median localization error of 47 cm. On the other
hand, UbiLocate and Spotfi have a median error of 73 cm and 82
cm, respectively. Note that RIScan only uses two pieces of angle
information while baselines combine three. Under the setting with
two APs, the median error of UbiLocate and Spotfi will increase to
97 cm and 109 cm, respectively.

7.2.2 Impact of Multipath and NLoS Conditions. We further con-
duct an experiment on a more complex scenario, as shown in Figure
13 (b). It is challenging for all localization systems to get a good
localization performance because this scenario is rich in multipath
and blockage. Although we eliminate the multipath components as
discussed in Section 4.2, this complex environment will still lead to
many confusing peaks in the APS, as the reflection will make the
RIS beam have more than one path to the client.

The results are shown in Figure 15. We can see that RIScan
achieves a similar median angular error of 1.6 degrees and 1.8 de-
grees when turning on/off the RIS multipath elimination (RME)
scheme. The 95th percentile angular error declines from 17.9 to 6.5
degrees when eliminating confusing paths. These results demon-
strate that our algorithm is effective in recognizing the direct RIS
path. In contrast, UbiLocate and Spotfi, which uses relative ToF to
distinguish the LoS path achieve a median angular error of 10.3
degrees and 11 degrees, respectively.

With RME, RIScan’s median localization error is 50 cm. In con-
trast, the median error of UbiLocate and Spotfi is 161 cm and 184
cm, respectively. Note that the accuracy of RIScan in the NLoS
scenario is close to the LoS scenario because of the stronger energy
and higher angular resolution of RIS beams. In other words, RIScan
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Figure 18: Experiment setup for the dynamic interference
scenario.

is not sensitive to multipaths and blockages, while the performance
of baselines degrades significantly in the same scenario.

7.3 Robustness to Devices’ Interference
In previous sections, all experiments are conducted with only one
client. Different from baseline systems, the clients in RIScan act as
receivers and enjoy the localization service in parallel. It is intuitive
that there will be no mutual interference among receivers, but we
still want to verify if it will compromise the system’s performance
when localizing multiple users. To this end, we conduct this experi-
ment by placing a group of three user devices at the 20 locations
marked with green points in Figure 18. The three devices in the
group are placed very close to each other, with a spacing of 0.5m,
as this is the scenario where interference is most likely to occur.
The environment is static without human interference. The angle
estimation and localization results are shown in Figure 16. It is
obvious that the performance of the three-user scenario is almost
the same as the single-user scenario in both graphs.

7.4 Robustness to Humans’ Interference
All the experiments discussed above are conducted under a static
environment without humans’ interference. However, in multi-user
scenarios, we cannot ignore the dynamic interference caused by
the movements of other RIScan users or other people in the en-
vironment. Here, we will verify the effectiveness of the dynamic
interference suppression schemes in RIScan. As discussed in Section
4.3, we consider three types of dynamic interferences: (1)Surround:
moving around clients but not crossing AC or RC path; (2)AC:
crossing AC path only; (3)RC: crossing RC path only; We first in-
dependently show RIScan’s suppression of each type of dynamic

interference. Then a general experiment mixing all types of inter-
ference is demonstrated. Furthermore, we also evaluate our system
in mobile client scenarios.

Suppress each type of interference: The RIScan system is
deployed in a spacious space with 20 testing locations, as shown
in Figure 18. To independently create dynamic AC interference, a
person is asked to frequently walk across the midpoint of the AC
path back and forth. What’s more, we also consider static cases
where the person stands at the midpoint of the AC path. RC inter-
ference is created in the same way. The angular estimation results
in terms of static and moving cases are shown in Figure 20. For
moving situations, with the optimal configuration sequence, the
phase pattern detection mentioned in Section 4.3, the interferences
caused by the surrounding movement and crossing AC path are
well suppressed. Their median angular errors are 2 degrees and 2.1
degrees, respectively, which is very close to the error of 1.5 degrees
in the situation without interference (i.e., No Inft.). As for crossing
the RC path, there are more outliers, and the median angular error
increases to 3 degrees. In the stationary situation, the results show
that standing either around clients or in the LoS path will not af-
fect our system. But the median error of standing at the RC path
increases slightly to 2.8 degrees

Mix all interferences: Then we evaluate our system in a more
general scenario where each type of dynamic interferences can be
mixed with each other. As shown in Figure 18, the experiments are
carried out in two cases: a two-person case (orange routes) and a
four-person case (orange and blue routes), respectively. For each
testing location, we let RIScan consecutively execute 30 times of
location estimation (≈15 s in total) while people are walking along
the parallel routes back and forth from different starting points.
These people walk across the testing area and introduce dynamic
interferences, which indicates that multiple types of interferences
may co-occur in one measurement. As shown in Figure 17, the
median angular error of the two-person and four-person cases is
around 2 degrees. However, when zooming into the CDF interval
from 0.8 to 1, we can observe that the result of the four-person case
contains more outliers. The reason is that more people cause more
complex interferences. With two RISs, RIScan achieves a median
localization error of 81 cm and 90cm for the static and moving
cases, respectively. Furthermore, we apply the K-means clustering
algorithm to process four consecutive measurements. Then the
maximum localization error of 80% measurements is less than 2 m
for both cases.
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Figure 19: Positioning mobile clients with RIScan

Positioning mobile clients:We also evaluate RIScan’s local-
ization performance for moving clients. As shown in Figure 19, a
person holding a receiver walks along three trajectories in a room.
The moving speed is about 0.5𝑚/𝑠 , a typical indoor walking speed.
The results demonstrate that RIScan achieves a median localization
error of 52cm when the client is moving, slightly worse than the
47cm in the static scenario. Moreover, 80% of the localization errors
are lower than 2m. The reason is that the change of the AC and
multipath components on the client’s channel caused by moving is
very tiny in a short period (i.e, the time between two RIS configura-
tions), and these interferences can be suppressed by the mechanism
in Section 4.3.1. The main impact comes from the asynchronous
RAoD estimation of two RISs. Since the time required for one RAoD
estimation is very short (within 0.25𝑠), during which the client will
not move a lot, RIScan is still robust in the mobile client scenario.

7.5 Localization Latency
RIScan is designed for multi-user localization with low latency.
The latency of single location estimation contains the time cost of
CSI collection and algorithm execution. RIScan steers the reflective
beam from −60◦ to 60◦ with 1◦ granularity, and each direction has
two configurations (Section 4.2). In total, there are 242 configura-
tions for each scan round. Hence, RIScan will cost 484𝑚𝑠 for data
collection with a packet rate of 1000Hz for two RISs. Because the
baselines only need one packet to estimate AoA, the time cost of
their data collection can be ignored. Thus, we only consider the
algorithm execution time as the latency for baselines.

We use MATLAB R2021a to run the algorithms in a PC which are
equipped with a 2.7 GHz Intel Core i5 CPU and 8GB RAM, and the
average execution time for one direction estimation is 30ms, 220ms,
and 800ms for RIScan, UbiLocate [25], and Spotfi [19], respectively.
Furthermore, in Spotfi and UbiLocate, a central server is deployed
to process the data. To achieve decimeter-level accuracy, three APs
are needed, which means their algorithms need to be executed
three times for single location estimation. So the time required for
single location estimation is 544ms, 660ms, and 1600ms for RIScan,
UbiLocate, and SpotFi, respectively. The relationship between the
localization latency and the number of users is shown in Figure 21.
Note that both baseline systems process users’ localization requests
in serial, while RIScan responds to requests in parallel. When there
are 5 clients, the latency of RIScan is around 0.5s, while UbiLocate
requires 3.3s and SpotFi even requires 8s. When the number of
clients grows to 10, RIScan can respond 12.5× faster than UbiLocate
(6.27s). RIScan’s latency does not increase with the number of users
(or requests), making it very suitable for multi-user scenarios.
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8 RELATEDWORK
8.1 Device-based Indoor Localization
WiFi-based indoor localization has been extensively studied in
the past decades. Here, we mainly focus on device-based indoor
localization systems that estimate the location of Wi-Fi devices.
Fingerprint-based indoor localization systems characterize each
location using RSSI [7, 11, 46, 49] or CSI [33, 34, 40] patterns, but
the proposed systems suffer unacceptable performance degradation
in dynamic environments.

Model-based approaches can estimate a variety of channel pa-
rameters (e.g., AoA [19, 21, 28, 42] and ToF [16, 17, 23, 32, 48]) using
multiple APs with antenna arrays and perform triangulation algo-
rithms (e.g., 2D MUSIC [19] ) for localization. Most of them rely on
large antenna arrays [10, 42] and frequency hopping [30, 32, 44]
for achieving decimeter-level precision under the ideal experimen-
tal setup. For those works [19, 25] built on COTS NIC, they must
undergo complex and frequent device calibration, making them
impractical. In addition, UbiLocate [25] builds an IEEE 802.11ac-
based WiFi localization system that enjoys wider bandwidth and
more antennas to improve AoA estimation accuracy. However, to
obtain accurate ToF estimation, they modify the 802.11 Fine Timing
Measurement (FTM) protocol [16]. In contrast, RIScan builds upon
COTS APs and does not require any modification on both hardware
and protocols. In addition, RIScan can provide localization services
for multiple users simultaneously with low latency.

8.2 RIS-aided Localization System
The emerging RIS technology is capable of customizing the wireless
environment, which shows potential advantages in addressing the
open issues of wireless localization. However, most of the research
only stops at the simulation stage and does not consider the actual
dynamic environments [3, 4, 6, 45, 52]. MetaRadar [51] presents a
metasurface-aided RSS fingerprint-based indoor localization sys-
tem, which leverages different configurations to generate different
RSS maps, improving the RSS specificity of each point in 3D space.
The system most similar to ours is MetaSight [41], which deploys
multiple metasurfaces on the roof to localize RFID objects in the
NLOS scenario. The metasurface reflects the RF signals from the
RFID tags and creates an MS path that goes around blockages. Then
the system modulates the frequency to separate the MS path for
direction estimation. However, frequency modulation is inappli-
cable in Wi-Fi systems because it will occupy other channels and
interrupt communication. In contrast, RIScan uses only a pair of
configurations and is suitable for Wi-Fi devices.
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8.3 RIS-aided Sensing Applications
The emergence of RIS changes the passive sensing paradigm to a
proactive sensing paradigm due to its wireless channel customiza-
tion. The new capability of producing a controllable transmission
path and amplifying the key signal makes the RIS suitable to im-
prove the sensing resolution and thus enable many novel attractive
applications [9, 15, 20, 27, 29, 54]. [20] exploits deep learning to
develop a RIS-aided Wi-Fi imaging system. [15] leverages some
well-designed RIS configurations to acquire redundant information
about the ROI to infer the posture. [54] and [9] improve the perfor-
mance of respiration monitoring by boosting the signal reflected
from the user’s chest. [29] and [27] actively change the wireless
channel to defend the adversary motion sensing.

9 DISCUSSION

RIS Placement: Proper placement will strengthen the ability
of RIScan to extend the localization range and resist interference.
Ideally, the distance between the AP and RISs should be kept to a
minimum to enhance the power of the RIS component. However,
the two RISs should not be placed too close to each other, as this
will result in only one angle estimation. In this paper, we deploy
the RISs 2𝑚 away from the AP (as shown in Figure 13). In addition,
RIS is not recommended to be placed in the proximity of obstacles,
as the nearby obstacles will block an extensive angular range of
RIS beam scanning. For instance, in the museum, RISs should be
placed a certain distance from the exhibits as visitors are usually
crowded around the exhibits.

Deployment of More RISs: This paper conducts all experi-
ments with two RISs. Although RIScan only needs two RISs to
achieve decimeter-level accuracy, deploying more RISs can further
improve the accuracy and combat more serious interferences. We
can deploy more RISs and control them in a time-division multi-
plexing manner to avoid mutual influence. What’s more, in actual
deployment, one AP may not be able to cover all areas requiring
location services. Since RISs are paired with an AP in RIScan, when
the user leaves the range of the first AP, he will automatically con-
nect to another AP with stronger signal strength and be localized
by the RISs paired with the new AP.

RIS-client Synchronization: The key point of the synchroniza-
tion issue is to let the clients know which RIS configuration each
packet corresponds to. In Section 6.3, we present the synchroniza-
tion method in our laboratory environments. In practical situations,
it can be achieved in two steps. First, the RIS should inform the AP
of the configuration being executed, and then, the AP will inform
the clients of the current RIS configuration. For the first step, AP
and RISs should be synchronized within 1ms (1/maximum packet
rate). Ethernet or Bluetooth can be used for AP-RIS communication
since their delay is in microseconds[13, 37]. In the second step,
when the AP starts a localization service, it will broadcast a service
packet containing active RIS information, including ID, location,
orientation, and configuration. If the AP’s channel is preempted due
to CSMA, the AP will notify the RIS to stop working and record the
current RIS configuration. When communication is restored, the
AP will resend the service information packet, containing the RIS
configuration before the interruption, and resume the localization

service. In this way, the clients can know which RIS configuration
each packet corresponds to.

Effect on Communication: RIScan’s positioning process will
not harm normal Wi-Fi communication. RIScan does not need to
modify the physical layer and link layer of the current Wi-Fi pro-
tocol. Although it needs to add some control packets (discussed in
RIS-client synchronization) at the application layer, the overhead
they introduce is very small. Because these packets will only be
sent when a positioning service starts, when positioning is restored
after being interrupted, and when switching RIS. Besides, the RIS
beam scanning will not negatively impact Wi-Fi’s physical layer.
The reason is that RIScan only uses RIS to create RIS paths and ex-
isting communication systems only need to treat them as multipath.
Furthermore, the user’s directional information (RAoD) provided
by RIScan is also very beneficial for RIS-assisted communication
scenarios [5, 22]. In these scenarios, how to find the optimal RIS
configuration to maximize the client’s SNR (or accurately point the
beam toward the client) is one of the key challenges.

10 CONCLUSION
In this paper, we present RIScan, a RIS-aided multi-user indoor
localization system that has low latency and is robust to dynamic
interference. A RIS beam scanning mechanism is used to achieve a
parallel direction estimation. In addition, we adequately leverage
the capability of RIS to suppress dynamic interference. Evaluation
results show that RIScan achieves a median error of 47cm and 71cm
in the static and dynamic environment with only two RISs as an-
chors. The localization latency of RIScan is around 0.5s and not
increases with the number of users. When responding to 10 clients’
requests, RIScan gains a 12.5× acceleration compared to the SOTA
Wi-Fi indoor localization system. The biggest advantage of RIScan
lies in responding to location service requests in parallel. This ad-
vantage will be more pronounced with more users. We envision that
RIScan can simultaneously provide real-time localization services
for a number of people in shopping malls, airports, and hospitals.
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