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Abstract—Smart speakers play an important role in smart
home envision. Active acoustic sensing can enable convenient
gesture interaction on smart speakers to complement voice
interaction in mandatory quiet scenarios and address privacy
concerns. However, existing solutions did not consider the impact
of the widely adopted uniform circular geometry of commercial
smart speakers on gesture tracking. To fill this gap, we propose
SparseTrack to achieve fine-grained multi-user device-free ges-
ture tracking on commercial smart speakers. We cast gesture
tracking to sparse recovery intuition to address signal coher-
ence issue on uniform circular mic-array. We then synthesize
wideband measurement to eliminate spatial ambiguity caused by
the insufficient spatial sampling rate of today’s smart speakers
in the ultrasonic frequency band. We further design a robust
trace extraction approach and properly handle the impact of the
doppler effect on gesture tracking. We implement SparseTrack
on COTS circular mic-array and conduct extensive evaluations.
The results show that our system can simultaneously track up
to 4 users’ gestures with a mean tracking error of 2.66 cm.

Index Terms—Acoustic Sensing, Device-free, Smart Speaker.

I. INTRODUCTION

Smart speakers play an essential role in the envisions of
smart space including home, office, ward, etc. They act as the
control hub to acquire user’s commands, analyze user’s intent,
and offer smart services. To fully achieve this intelligence, it
is indispensable to empower them with convenient interaction
approaches. Voice/speech recognition is the major interaction
way of current commercial smart speakers. However, manda-
tory quiet areas such as the living room with a sleeping baby
and hospital wards may limit the usage of voice interaction.
In addition, voice interaction has been criticized for privacy
issues [1].

To this end, researchers tried to repurpose the smart speaker
as an active sonar to track the gestures of nearby users
to provide another way of control and interaction. Recent
efforts [2] have demonstrated the feasibility of a non-uniform
linear microphone array (mic-array). But compared with linear
array’s 180◦ azimuthal coverage, circular array’s 360◦ cover-
age is preferred in voice picking. The dominating array layout
of most commercial products (see Table I) is the Uniform
Circular mic-Array (UCA). However, the UCA layout poses
significant challenges in multi-user tracking and also excludes
most existing solutions that are dedicated to the linear layout.

Firstly, device-free gesture tracking relies on signals re-
flected by the targets as shown in Fig. 1. Signals reflected by
different targets are attenuated and delayed copies of the signal
emitted by the speaker, i.e., the reflections are coherent signals.
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Fig. 1: Gesture Tracking on Smart Speaker. The smart
speaker tracks the surrounding activities, e.g., gesture com-
mands from one or multiple users, through analyzing the
reflected acoustic signals like an active sonar.

Product Mic Layout Mic Spacing
Amazon Echo 6-mic uniform circular array 4.96 cm

Amazon Echo Dot 4-mic uniform circular array 7.00 cm
Apple Homepod 6-mic uniform circular array 7.10 cm

Sonos One 6-mic uniform circular array 5.99 cm

TABLE I: Mic-array Specifications of Smart Speakers.

Signal coherence degrades the performance of subspace-based
direction and location tracking methods, e.g., MUSIC [3],
[4]. Previous work based on MUSIC [2], [5] performs the
spatial smoothing operation on the linear array to decorrelate
the signals [6]. However, unlike linear arrays, UCA lacks the
orientational invariant structure [7], hence it is still an open
issue to handle signal coherence under the constraints of smart
speakers: aperture size and the number of microphones [8].

Secondly, the microphones of today’s smart speakers are
usually spaced for several centimeters (see Table I) to in-
crease the aperture size for better spatial resolution in picking
human voice. However, active acoustic sensing usually emits
inaudible ultrasound (17-23 kHz) to prevent annoyance. As
the ultrasound wavelength (1.5-2 cm) is much smaller than
the actual spacing of these smart speaker mic-arrays, the
spatial sampling rate is not sufficient, which leads to the
spatial aliasing analogous to the case of insufficient temporal
sampling [9]. Existing work [2] adopts the non-uniform array
to overcome this problem, but most commercial mic-array has
uniform geometry. Without a sufficient spatial sampling rate,
gesture tracking techniques will encounter severe ambiguity
issues and performance degradation.

To practically enable gesture tracking on today’s smart
speakers, we propose a fine-grained gesture tracking system,
SparseTrack, which has no microphone geometry assumption



and is fully compatible with commercial UCAs. It works
harmonically with coherent signals and insufficient spatial
sampling rate in the ultrasound band.

Specifically, signal coherence is a well-known headache for
subspace-based sensing methods. Instead of countering the
inherent defect of the estimation technique itself, we argue to
pursuit a better cure by adopting more compatible techniques.
Our approach is based on an important observation on reflector
sparsity, i.e., the number of significant moving reflectors that
could have contributed to the overall reflected signal is limited,
which enlightens us to treat gesture tracking as a sparse
recovery problem. Therefore, we rigorously model gesture
tracking on commodity circular mic-array from the perspective
of sparse recovery to achieve accurate movement tracking.

To address the ambiguity issue caused by the insufficient
spatial sampling rate, we observe that the ambiguous positions
are related to the frequency of the acoustic sensing signals.
Thus, we actively emit wideband OFDM signals and syn-
thesize the measurements of different frequency components
to make the true position more pronounced than ambiguous
ones. In addition, we develop a robust approach to extract
gesture traces from noisy measurements. We further design a
velocity-aware scheme to account for the Doppler effect when
the gesture is performed at high speed.

The contribution of this work is summarized as follows:
• We identify the incompatibility between the state-of-the-

art gesture tracking solutions and today’s commercial
smart speakers, reveal the key challenges on signal co-
herence and spatial sampling rate, and propose effective
countermeasures.

• We formulate the device-free gesture tracking as a sparse
recovery problem and propose SparseTrack to realize
fine-grained multi-user device-free gesture tracking on
commodity smart speakers.

• We implement SparseTrack on COTS circular mic-array
and conduct extensive evaluations. The results show that
our system can simultaneously track up to 4 users’
gestures with a mean tracking error of 2.66 cm.

II. RELATED WORK

In this section, we summarize recent efforts on gesture
tracking including acoustic-based and RF-based approaches.

Device-free Acoustic Sensing. There have been many early
works [10]–[12] supporting the classification of a pre-defined
set of gestures using active acoustic sensing. SilentSign [13]
uses acoustic sensing and verification model to enable con-
venient signature verification in smart devices. In terms of
acoustic-based gesture tracking, many previous works focus
on near-device interaction. FingerIO [14] can enable a mobile
phone to track the nearby finger with an average accuracy of 8
mm. VSkin [15] supports capturing finger movements on the
back of a mobile phone. Both LLAP [16] and Strata [17] resort
to the phases of audio signals to obtain finer resolution. These
works focus on tracking a single reflector. Recently, RTrack [2]
enables multi-user tracking by integrating a non-uniform linear
mic-array, 2D MUSIC algorithm, and an RNN-based neural

network. However, circular array’s 360◦ azimuthal coverage
is more preferred in voice picking and widely adopted on
commercial products. Motivated by this trend, our work aims
to fill the gap between the circular mic-array geometry of smart
speakers and existing multi-user tracking solutions. We enable
multi-user 2D gesture tracking on a uniform circular mic-array
without the training burden.

Device-free RF Sensing. Besides acoustic signals, RF
signals are also extensively exploited as the sensing medium.
WiFi routers and software-defined radios (SDRs) are two
common platforms for RF sensing. WiSee [18], WiAG [19],
and Widar [20] support the classification of a pre-defined set
of gestures using active RF sensing. WiTrack [21] utilizes
wideband FMCW emitted by a customized SDR to achieve
decimeter-level device-free trajectory tracking. It is worth
mentioning that sparse representation has also been adopted in
RF sensing. ROArry [22] accurately localizes a target device
even under low SNRs by casting DOA estimation into a
sparse recovery problem. However, our target is the device-
free tracking scenario, and we need to cope with severe signal
coherence. WiDeo [23] shows that the RF backscatter sensing
can be formulated using sparsity and compressive sensing
intuition, and achieves a 7 cm median error on tracking moving
persons. Compared with WiDeo, we focus on acoustic signals,
which expose distinct behaviors as the RF signals, such as
insufficient spatial sampling rate, the Doppler effect, etc.

III. PROBLEM FORMULATION

A. Signal Model of Uniform Circular Mic-array

We give a mathematical signal model which paves the way
to design device-free tracking on today’s smart speakers.

1) Basics of Device-free Tracking on Smart Speaker: Fig. 2
shows three major components of a smart speaker: a speaker
array, a microphone array consisting of several microphones,
and a micro-controller. Device-free gesture tracking gener-
ally starts with active signal emission by the speaker array,
thereupon reflection signals collection by the mic-array, finally
reflector localization and trajectory extraction by the micro-
controller.

The basic principle of device-free tracking is that dis-
tributed microphones receive differently delayed versions of
the emitted signal, which can be parameterized by the distance
and orientation of reflectors with respect to the mic-array.
Assuming transmitted signals is s0(t), D reflectors exist and
i-th reflector is located at different distance di and angle-
of-arrival (AoA) θi w.r.t. the smart speaker with L micro-
phones. The signal xk(t) arriving back at the k-th microphone
is xk(t) =

∑D
i=1 fi(s0(t), di, θi), where fi(·) characterizes

the distortion applied by i-th reflector. The goal of device-
free tracking is to estimate reflectors’ location parameters
[(di, θi), i = 1, 2, ..., D] that compose the mic-array measure-
ments X = [x0(t), x1(t), ..., xL−1(t)]T .

2) Signal Model on Uniform Circular Mic-array: Distinct
from recent modeling efforts on linear mic-array [2], we
choose to model device-free tracking on uniform circular
mic-array rigorously, so that most commercial smart speakers
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Fig. 2: Typical Architecture of a Smart Speaker and the
Signal Model of the Uniform Circular mic-Array (UCA).
Commercial smart speakers adopt UCA to achieve uniform
spatial coverage. Our signal modeling focuses on UCA, but in
fact, it can be extended to arbitrary mic geometry layout.

enumerated in Table I can benefit from our proposed design
instantly. As shown in Fig. 2, given a circular mic-array with
radius R and L equally-distributed microphone elements, the
0-th element is located at the x-axis of the coordinate frame,
and the coordinate origin is treated as the reference point ref.
Thus, the angle between x-axis and k-th element ϕk = 2πk/L
and the coordinates of k-th element Pk = [R cosϕk, R sinϕk].

For clarity, we will first illustrate the model of single
reflector localization, followed by the multi-reflector version.
Given a reflector at distance di and AoA θi w.r.t. ref, we can
first obtain the ref phase φref = 2πf 2di

c , where c denotes
the sound velocity and f denotes the frequency of emitted
signal s0(t). Then, the phase offset between k-th element and
the ref under circular mic-geometry can be parameterized
by AoA θi: ∆φk = 2πf∆dk/c = 2πfR cos(ϕk − θi)/c,
where ∆dk denotes the signal path difference between k-th
mic and ref and is depicted intuitively by the yellow thick
line in Fig. 2. Therefore, the signal phase at k-th element is
φk(di, θi) = φref + ∆φk = 2πf(2di−R cos[2πk/L− θi])/c.
Thus, given a reflector i with (di, θi), we have:

X = [x0(t), x1(t), ..., xL−1(t)]T

= [e−jφ0(di,θi), ..., e−jφL−1(di,θi)]T cis0(t)

= a(di, θi)cis0(t),

(1)

where a(di, θi) = [e−jφ0(di,θi), ..., e−jφL−1(di,θi)]T denotes
the steering vector for reflector i, and constant ci represents
the propagation and scattering attenuation of reflection signals
from reflector i.

Generalizing it to the scene with D reflectors with (di, θi),
i = 1, ..., D w.r.t. ref, we have:

X = [

D∑
i=1

cie
−jφ0(di,θi), ...,

D∑
i=1

cie
−jφL−1(di,θi)]T s0(t)

= [a(d1, θ1), ..., a(dD, θD)] · [c1, ..., cD]T s0(t),

(2)

If we define the steering matrix and signal vector as A =
[a(d1, θ1), ..., a(dD, θD)] and use S = [c1, ..., cD]T s0(t) =
[s1(t), ..., sD(t)]T to absorb the whole attenuation effects on
transmitted signals, and further consider the noise N , then the
signal model of multi-reflectors localization is:

X = A · S +N . (3)

Algorithm 1 The Matching Pursuit Solver

Input: measurement vector X , dictionary Dic.
Output: list of position-strength tuple (Posn, cn)Nn=1.

Initialization: n← 1, Rn ← X ;
while not reach the stop condition do
vecn = arg maxveci [Rn · veci/|veci|

2], veci ∈ Dic;
Posn ← position coordinates extracted from vecn;
cn ← Rn · vecn/|vecn|2;
Rn+1 ← Rn − cnvecn;
n← n+ 1;

end while

B. Casting to the Sparse Recovery Intuition

There are many previous attempts trying to solve the signal
localization model of Equation 3. Sub-space based methods,
such as MUSIC [2], [5], are widely used with linear arrays
but have difficulties on UCA when handling coherent signals.
We note that this limitation is not caused by the properties
of physical signals, but by the mathematical properties of the
sub-space solver. Thus, we propose to consider the tracking
problem from the perspective of sparse recovery, which is
immune to signal coherence and more compatible with our
target scenario. The intuition is that, as static reflectors can be
eliminated through signal cancellation [2], there are limited
significant moving reflectors in an environment. Thus, the
tracking problem can be formulated to find the smallest
number of scaled and shifted reflection signals that could make
up the overall signals received by the mic-array.

Technically, we expand the steering matrix A to an over-
complete matrix with N (N � D) dimension A′ =
[a(d1, θ1), a(d2, θ2), ..., a(dN , θN )], where a(di, θi) represents
a possible reflector at distance di and AoA θi w.r.t. ref.
Vector S is also expanded to an N dimension sparse vector
S′ = [0, 0, ...s1, 0, ...s2...sD...0]T . Thus, Equation 3 becomes

X = A′ · S′ +N . (4)

If a true reflector with a(di, θi) exists, the corresponding
coefficient will be si, otherwise, it is 0. In our scenario, as the
transmitted signal s0(t) is pre-known, we further incorporate
s0(t) into A′:

X = [s0(t)a(d1, θ1)...s0(t)a(dN , θN )]·C = Dic·C+N , (5)

where Dic == [vec(d1, θ1, t)...vec(dN , θN , t)] is called the
dictionary. It is a pre-calculated matrix with each element, i.e.,
veck, storing the time domain waveform reflected from a sin-
gle location (dk, θk). Similar to S′, C = [0, ...c1, ...cD...0]T is
a sparse vector representing the strength of the reflection from
certain locations. When the number of significant reflector D is
much less than the dimension N of the dictionary, the tracking
problem can be formulated to a sparse recovery problem, i.e.,
finding a sparse vector C to represent the measurements X
vector in the dictionary space:

min ‖C‖0 s.t. ‖X −Dic · C‖2 ≤ ε (6)
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Fig. 3: SparseTrack Overview. We first adopt the preprocess-
ing module from [2] to eliminate the self-interference and the
static reflectors, while preserving reflection signals from users’
gestures. Then we apply the sparse recovery framework to lo-
calize the reflectors (§IV-A). After that, we extract the gesture
traces from continuous localization measurements (§IV-B).
Finally, we discuss the detailed dictionary construction and
the design in handling the Doppler effect (§IV-C).

Given a recovered C, we can derive reflectors’ position
(Posn)Dn=1 from the position of nonzero coefficients, and also
obtain the reflection strength from coefficients values.

In this work, we adopt an iterative greedy solver, matching
pursuit (MP) [24] to solve the above sparse recovery problem.
The MP solver framework is shown in Algorithm 1, which
iteratively finds a vector from Dic with maximum projection
to the measurement X , and then subtracts it from the measure-
ment X until the number of iterations reaches the threshold.

IV. DESIGN

Our target scenario is shown in Fig. 1 and the basic work-
flow is shown in Fig. 3. The SparseTrack system emits ultra-
sonic signals through the speaker and collects reflected signals
via a UCA. To fully enable device-free gesture tracking, we
still face three challenges. Firstly, we should address the spatial
ambiguity issue caused by the insufficient spatial sampling
rate. Secondly, we need to handle noisy measurements to
extract gesture traces robustly. Thirdly, we should consider the
dynamic nature of gestures and eliminate the negative impact
of the Doppler shift on gesture tracking. In this section, we
elaborate on our designs to address them.

A. Ambiguity-free Reflector Localization

1) The Spatial Ambiguity Problem: As analyzed before,
spatial ambiguity exists because most smart speakers are
designed to work on the audible band but the active acoustic-
based tracking system works on the ultrasonic band for an-
noyance reduction. Thus, for a narrowband ultrasonic signal
with frequency f , the spacings of microphones on commodity
smart speakers (Table I) are generally larger than half of
its wavelength, which causes spatial aliasing or ambiguities
in localization. Technically, for a reflector at certain range
d and direction θ, there may be multiple possible direc-
tion parameters θ0, θ1...θn making similar phase values as:
φk(d, θ0) ≈ φk(d, θ1) + 2k1π ≈ ... ≈ φk(d, θn) + 2knπ. In
other words, there are multiple similar vectors in the dictionary
Dic: vec(d, θ0) ≈ ... ≈ vec(d, θn). The ambiguity issue also
exists in the range domain: vec(d0, θ) ≈ ... ≈ vec(dm, θ).

Here we take a specific example to show the problem.
Suppose the spacing R=5 cm, the frequency of emitted signal
f=17 kHz, and the location of the reflector (d, θ) = (150 cm,
30◦). Adopting the sparse recovery and MP solver mentioned
in Section III-B, the projections among all vec(d, θ) in Dic
are shown in Fig. 4a, where the color corresponds to the
magnitude value of projections. MP solver needs to select the
vec(di, θi) with maximum projection as the location estima-
tion. However, the serious ambiguity in Fig. 4a makes it hard
to identify the ground truth at (150cm, 30◦).

2) Synthesizing Wideband Measurements: To address the
spatial ambiguity issue in UCA, we propose to synthe-
size wideband measurements. Instead of emitting a single-
frequency signal, we utilize a wideband signal with K fre-
quency components f1, f2...fK , and corresponding dictio-
naries Dic1, Dic2...DicK . Our key observation is that the
measurement from each frequency component fi experiences
different ambiguities, but all measurements include the posi-
tions of true reflectors. For example, the ambiguity of f1 is
[θ0, θi...θj ], the ambiguity of f2 is [θ0, θp...θq], the ambiguity
of fK is [θ0, θh...θk]. Their only intersection will be the true
direction θ0. Thus, when we synthesize all measurements to-
gether, the measurements of the true position are enhanced and
become possible for accurate localization. By leveraging the
frequency diversity of the transmitted signal, we can address
the spatial ambiguity issue without enforcing the uniform array
spacing to be non-uniform spacing like [2].

Technically, our wideband-based sparse recovery can be
formulated as follows: we use OFDM to generate a wideband
signal with K subcarriers. According to Equation 5, for each
subcarrier fk, we have Xk = Dick · Ck, In our scenario,
reflector sparsity holds for dictionaries of different subcarriers,
i.e. Ck = Cl for k 6= l. It means that the reflectors’ position
and attenuation coefficient at each single position is the same
for different subcarriers, which is not contradictory to the
frequency selective fading after the overlap of the multipath
effect. Thus, it is equivalent to solve multiple-dictionary (MD)
joint optimization problem as follows [25]:

min ‖Ck‖0 , for k = 1, 2...K

s.t. ‖Xk −Dick · Ck‖2 ≤ ε and Ck = Cl for k 6= l
(7)

We leverage the constraint Ck = Cl for k 6= l to transform the
above optimization to a single-dictionary version. Specifically,
we stack Xk vertically as X = [X1, X2...XK ]T such that
X = Dic · C where Dic is also stacked by Dick and C =
C1 = C2 = ... = CK . Then, we can utilize the MP solver in
Algorithm 1 to derive C.

We take the same scenario in Fig. 4a to intuitively show the
effectiveness of our design. We first test OFDM signals with
10 subcarriers from 17 kHz to 17.5 kHz. Compared with the
single-frequency case, Fig. 4b shows a significant reduction
of ambiguities in the range dimension. Then, we test OFDM
signals with 120 subcarriers from 17 kHz to 23 kHz. As shown
in Fig. 4c, the ambiguity issue disappears and the ground
truth location (150cm, 30◦) can be clearly identified. The final
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Fig. 4: Using Wideband Signal to Eliminate Spatial Ambiguity. Different narrow band
signals result in different ambiguities but all contain the correct reflector information.
Accurate results can be obtained after synthesizing them together.
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Fig. 5: Example Outputs of
Reflector Localization. Two
gestures are performed simul-
taneously in 8 seconds.

parameters of the OFDM signals emitted by SparseTrack are
shown in Section V.

Before locating the reflector, it is worth noting here that we
adopt the interference cancellation method in [2] to filter out
the interference from direct transmission of the speaker and
reflection of static clutters and human bodies. Specifically, we
record the direct transmission and environmental reflection in
the static scene. We then subtract this recorded signal from the
received signals. We further estimate the channel information
to remove the residual reflectors like human bodies as in [2].
B. Robust Gesture Tracking

1) Trace Extraction: In this section, we aim to extract
gesture traces from the output of reflector localization. A
sample output of our ambiguity-free reflection localization is
shown in Fig. 5. Two users are required to ‘draw a circle’ and
‘draw a triangle’ simultaneously. During the drawing period,
the smart speaker repeatedly transmits and receives OFDM
symbols. The OFDM symbols are synchronized through a
chirp header. We run the ambiguity-free reflector localization
algorithm on each symbol, and the accumulated localization
results are shown in Fig. 5.

To reduce the noise in the gesture traces in Fig. 5, Sparse-
Track leverages the time domain to expand the localization
outputs to the time-space 3D space as in Fig. 6a. In the
time-space 3D space, the noise points are scattered from
the real reflector traces. Therefore, we utilize the clustering
technique (DBSCAN algorithm in our prototype) to identify
large clustered point sets, i.e., those highly likely induced by
gestures. Then we conduct 3D curve fitting to bridge these
clusters respectively (to account for missing points between
clusters). Finally, we project the 3D curves back to the 2D
plane to extract gesture traces. The circle and the triangle are
revealed in the X-Y plane of Fig. 6b.

2) Reducing Computational Cost: In this section, we
introduce our optimization to better support real-time tracking.
We first analyze the computation cost per OFDM symbol.
Given L microphones, K subcarriers, Nθ search steps in
direction domain, Nd search steps in range domain and Niter
iterations for MP solver of the reflector localization, the time
complexity per symbol will be O(η) = O(Niter ·Nθ ·Nd·L·K).
Since human hand movement is relatively slow, we can reduce
the size of the spatial search window by setting smaller Nθ ·Nd
without degrading tracking performance. Specifically, the MP

solver can search in a window of 20 cm×20 cm with a 1 cm
search step for each gesture per OFDM symbol. After certain
numbers of initial symbols (10 in our prototype), the spatial
search window will slide and track the gesture according to
the latest extracted traces.
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Fig. 6: Leverage Time Domain Information to Extract
Gesture Traces. (a) Casting the location measurements into
the time-space 3D space to scatter noise points. (b) Using
clustering and curve fitting to extract the noise-free trace.

C. Combating Reflector Dynamics

1) The Impact of Doppler Effect: Due to the low velocity
of the sound, it is known that the Doppler effect has obvi-
ous impact on acoustic measurement. When the reflector is
moving quickly, e.g., waving the hand in an interactive game,
the frequency of the reflected signals is shifted. This will
downgrade the performance of gesture tracking, because the
signals received by the mic-array are no longer the delayed
version of the transmitted OFDM symbols. Specifically, sup-
pose the original frequency-domain sequence of OFDM signal
is [s(k), k = 0, 1...N − 1], the time-domain sequence is

t(n) =
1

N

N−1∑
k=0

s(k)ej
2πnk
N (n = 0, ...N − 1) (8)

Due to the Doppler effect, the time-domain sequence becomes:

td(n) =
1

N

N−1∑
k=0

s(k)ej
2πn(k+ε)

N (n = 0, ...N − 1) (9)

where ε is the normalized frequency offset, i.e., frequency
offset divided by the subcarrier interval. The corresponding
frequency-domain sequence is:

sd(k) =
1

N

N−1∑
n=0

N−1∑
i=0

s(i)ej
2πn
N (i+ε−k) (k = 0, ...N−1) (10)
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Fig. 7: Impact of the Doppler Effect. With the velocity
increasing from V0 to V2, frequency shifts make the range
measurement (a) in wrong position and the direction measure-
ment (b) in reduced signal strength.

In the ideal case without the Doppler effect, the transmitted
and received signals are Xk = AkSk = Ak[c1, ..., cD]T s(k)
for each subcarrier. However, in the real situation, the cor-
responding signals are Ak[c1, ..., cD]T sd(k). When the hand
is moving, ε 6= 0, thus sd(k) 6= s(k). Given motion speed
v, the frequency offset for signals with frequency fi will be
∆fi = 2fi · vc . Thus, the difference between sd(k) and s(k),
and hence the error is larger with the greater moving speed.

We conduct simulation experiments to illustrate the impact
of the Doppler effect. Suppose a reflector at (80 cm, 150◦)
with different instantaneous velocities from -200 to 200 cm/s,
where the positive ones denote moving close and negative ones
denote moving away. We always adopt the dictionary Dick
calculated from the static case for the MP solver to localize
the (d, θ) under different instantaneous velocities, i.e., without
handling the Doppler effect properly. As shown in Fig. 7, with
the increase of velocity, the results of the range measurement
become more dispersed and deviated from the ground truth.
Performance degradation can also be observed in the direction
measurement, i.e., weaker signal strength in true direction with
increasing velocities.

We also test a real scenario where one user performs ges-
tures with a velocity around 10 cm/s, and the other performs
gestures with a velocity around 40 cm/s. As shown in Fig. 8a,
if using the default dictionary, the range measurements often
deviate from the correct value. Both range and direction
measurements of the quicker gesture are often missing, which
is caused by the low signal strength. Thus, the dictionary
Dick for the MP solver should adapt to the gesture dynamics
accordingly to reduce localization errors.

2) Velocity-aware Dictionary: Based on the above analysis,
we propose to construct the velocity-aware dictionary to ad-
dress the Doppler effect problem. Specifically, we expand the
original 2D dictionary (d, θ) to a 3D dictionary (d, θ, v). We
denote sd(k,vi) for velocity vi. Thus, the matching dictionary
for velocity vi should be:

Dic(k,vi) = [sd(k,vi)ak(d1, θ1)...sd(k,vi)ak(dN , θN )] (11)

We then stack dictionaries for different velocities together:

Dic3Dk = [Dic(k,v1), Dic(k,v2)...Dic(k,vi)] (12)

 

(a) w/o Velocity-aware Dictionary

 

-

-

-

(b) w/ Velocity-aware Dictionary

Fig. 8: Trace Extraction under the Doppler Effect. (a) The
localization performance is interfered with by the reflector
movement. (b) The impact of the Doppler effect can be
compensated by including the velocity in the dictionary.

As shown in Fig. 8b, with the help of the velocity-aware
dictionary, both the range and direction localization have much
better accuracy and continuity. It is worth mentioning that the
time complexity per symbol now becomes O(η) = O(Niter ·
Nv · Nθ · Nd · L · K) after adding Nv search steps in the
velocity domain, but it still supports real-time gesture tracking
as evaluated in Section VI-B.

V. IMPLEMENTATION

This section describes the implementation of the Sparse-
Track prototype and our parameter selection.

Prototype. We implement the SparseTrack prototype with
a Raspberry Pi 3 board, commercial off-the-shelf (COTS)
speakers, and a COTS mic-array. As shown in Fig. 10a, the
prototype has a similar layout as commodity smart speakers,
such as Amazon Echo. Specifically, we use four Edifier M1250
speakers to emit signals to achieve 360◦ azimuthal coverage.
The mic-array is a ReSpeaker 6-Mic circular uniform array
with 4.7 cm spacing, which is widely used for prototyping
smart speakers. We note that the Raspberry Pi micro-controller
is only for controlling and data logging, and not powerful
enough for audio signal processing. We emit the ultrasonic
signals and record the reflected signals into WAV files. Then
the recorded signals are analyzed in MATLAB using a Mac-
Book laptop with an Intel i5 processor and 16 GB memory.

Parameters of the Emitted OFDM Signals. We repeatedly
transmit and receive OFDM symbols for acoustic sensing. The
default OFDM symbol has 6 kHz bandwidth (17 kHz - 23
kHz) and 960 time-domain samples under 48 kHz sampling
rate, i.e., the duration of each symbol is 20 ms. There are
480 subcarriers in total, but only the frequency coefficient of
120 subcarriers within 17 kHz - 23 kHz is a non-zero random
sequence composed by [-1,1]. Unless otherwise specified, we
transmit and receive 400 symbols (8 seconds) for every single
experiment to calculate tracking error in evaluation. And we
add a chirp sequence before these OFDM symbols as the
preamble for synchronization.

VI. EVALUATION

A. Evaluation Settings and Methodology

As shown in Fig. 10b, we ask the volunteers to sit in front
of the speakers and draw different shapes according to the
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Fig. 9: Tracking Results Example. The smart speaker is located at (0,0). SparseTrack can simultaneously track up to 4 users.

(a) SparseTrack Prototype (b) Evaluation Settings
Fig. 10: Prototype and Evaluation Settings.

predefined templates on the table. They are required to follow
the size and shape of the template. The evaluated templates
include simple shapes like triangles and circles and complex
shapes like uppercase English letters and Arabic numbers.
These templates are used as the ground truth. We collect
167 traces in total under different experiment conditions,
which will be detailed in the corresponding subsections. The
tracking error is measured in the symbol basis. It is defined
as the minimum Euclidean distance from the estimated hand
positions by the symbol to the trajectory of the template.

We first conduct micro-benchmark to show the impact of
OFDM parameters selection, and the effectiveness of our
design components on handling spatial ambiguity and the
Doppler effect. We also measure the end-to-end latency of our
system to evaluate the real-time tracking capability. Then we
provide an overall evaluation on tracking accuracy and detailed
evaluation on different impacting factors in practice, including
the number of users, ranges, directions, ambient environment.
In general, SparseTrack can simultaneously track 1 to 4 users’
gestures. Some examples are shown in Fig. 9.

Unless otherwise specified, we ask two volunteers to sit
1 m away from the speakers with a 30◦ bearing angle in a lab
environment. They are required to draw different shapes along
the templates with hands with a speed of around 10 cm/s. We
change the experiment parameters based on this default setting
to evaluate different aspects of our system and the impact of
various factors.

B. Micro-benchmark

OFDM Parameter Selection. We determine the parameters
of the emitted OFDM signals, i.e., the bandwidth and the
symbol duration. To choose proper signal bandwidth, we emit
various bandwidths of OFDM signals including 1 kHz, 2 kHz,
4 kHz, 6 kHz to test the tracking performance. The mean and
variance of errors are shown in Fig. 11a. The tracking accuracy

is improved with larger bandwidth, which validates the benefits
of synthesizing wideband measurement. Since acoustic signals
with frequencies higher than 17 kHz are inaudible for most
people and frequencies higher than 23 kHz are subject to
severe attenuation in our platform, the OFDM sub-carriers
are set to 17 kHz - 23 kHz. In addition, we set the duration
of the emitted OFDM symbol as 960 samples under 48 kHz
sampling rate, i.e., the duration is 20 ms, because 20 ms allows
a sensing range of 3.4 m, which can meet the requirements of
most indoor applications.

Handling Spatial Ambiguity. We first compare our design
with the 2D MUSIC approach [2]. To ensure a fair comparison,
the chirp signal of RTrack is set to 20 ms and spans between
17 kHz to 23 kHz. In the simulation, both SparseTrack and
RTrack use the same uniform linear array (ULA) with a 25
cm aperture size. The ground truth signal comes from 30◦

with 10 dB SNR. We modify the mic spacing via changing
the number of the mic in ULA, i.e., given an array aperture
of 25 cm, 30-mic array corresponds to mic spacing of around
0.9 cm, while 6-mic array corresponds to the mic spacing of
5 cm.

As shown in Fig. 11b and Fig. 11c, when the mic spacing
is less than half of the ultrasonic wavelength, both approaches
experience no ambiguity. However, the ambiguity problem of
the 2D MUSIC approach becomes obvious when the mic spac-
ing increases. On the contrary, SparseTrack can still clearly
identify the correct position, which validates the effectiveness
of the ambiguity-free reflector localization design.

Since RTrack does not work in UCA, we only evaluate
SparseTrack in the UCA case. We set the radius of UCA
as 5 cm, and change the number of the mic from 35 to 6.
The corresponding mic spacing is changed from 0.9 cm to
5 cm. The results are shown in Fig. 11d. SparseTrack can
handle the spatial ambiguity issue even when the mic spacing
is much larger than half of the wavelength. Thus, SparseTrack
can support gesture tracking on today’s smart speakers with
circular geometry.

Handling the Doppler Effect. To evaluate the effective-
ness of the velocity-aware dictionary, we ask one volunteer
to draw shapes under default settings, but another user to
draw shapes with different speeds from 10 cm/s to 50 cm/s.
We conduct gesture tracking with both the static dictionary
and the velocity-aware dictionary for the user with different
gesture speeds to compare the tracking performance of two
dictionaries under the Doppler effect.



1K 2K 4K 6K
Bandwidth(Hz)

1
2
3
4
5
6
7
8

Er
ro
r(c
m
)

(a) OFDM Bandwidth

0.9 1.0 1.3 1.7 2.5 5.0
Spacing(cm)

0

30

60

90

120

150

180

 (d
eg

re
e)

(b) 2D MUSIC with ULA

0.9 1.0 1.3 1.7 2.5 5.0
Spacing(cm)

0

30

60

90

120

150

180

 (d
eg

re
e)

(c) SparseTrack with ULA

0.9 1.0 1.3 1.6 2.1 3.1 5.0
Spacing(cm)

0

60

120

180

240

300

360

 (d
eg

re
e)

(d) SparseTrack with UCA

10 20 30 40 50
Velocity(cm/s)

1

2

3

4

5

6

7

Er
ro

r(c
m

)

w/o velocity-aware dictionary
w/ velocity-aware dictionary

(e) Gesture Speed
Fig. 11: Micro-benchmark Evaluation. SparseTrack leverages wideband signals (Fig. 11a) to address the spatial ambiguity
issue on both ULA (Fig. 11c) and UCA (Fig. 11d). In both cases, it can correctly identify the ground truth at 30◦. In addition,
it eliminates the impact of the Doppler effect through a velocity-aware dictionary (Fig. 11e).
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Fig. 12: Overall Performance. SparseTrack can track 4 users’ gestures simultaneously with a mean tracking error of 2.66
cm (Fig. 12a). It achieves good tracking performance within the range of 1.5 m (Fig. 12b) and works robustly under different
directions (Fig. 12c), locations (Fig. 12d), and ambient noise (Fig. 12e).

Fig. 11e shows that when the user moves hand with a veloc-
ity of 10 cm/s, both the static dictionary and the velocity-aware
dictionary achieve a mean error of around 1.0 cm. However,
when the motion speed increases, the static dictionary leads to
continuous performance degradation, while the performance of
the velocity-aware dictionary remains stable. This comparison
validates the effectiveness and necessity of our design on
handling the Doppler effect.

System Latency. In this part, we show that our design
can support real-time gesture tracking. Table II shows the
processing time of each component in SparseTrack for tracking
1 to 4 users. Specifically, we set the spatial search window as
20 cm×20 cm with 1 cm×1 cm step size, and the velocity
search window as -50 cm/s to 50 cm/s with 10 cm/s step size.
The iteration numbers of the MP solver for 1, 2, 3, and 4 users
are 2, 4, 6, and 8 respectively. As shown in Table II, the time
consumption of pre-processing module mainly comes from
operations on interference cancellation, subcarrier calculation,
and selection for each microphone, which takes a constant
time of 2.0 ms for different user numbers.

The time consumption of the reflector localization module
mainly depends on the MP solver, which searches reflectors
over the search window. With the increasing number of users,
two factors, i.e., the number of tracking windows and the
number of MP iterations also increase. Thus, the processing
time of 2, 3, and 4 users cases increases accordingly, which
is approximately 4, 9, and 16 times of that of the 1-user case.
The time consumption of the trace extraction module is mainly
from the process of updating the temporary dictionary for the
slid window. Since each user has a search window and the
corresponding dictionary, the processing time of 2, 3, and 4
users cases are approximately 2, 3, and 4 times of that of
the 1-user case. The end-to-end latency for 1-4 users is 7.1

ms, 20.5 ms, 43.2 ms, and 76.6 ms respectively, which are
sufficiently short to support real-time gesture tracking 1.

User
Number

Pre-
processing

Reflector
Localization

Trace
Extraction

Total
Latency

1 2.0 3.7 1.4 7.1
2 2.0 15.8 2.7 20.5
3 2.0 37.4 3.8 43.2
4 2.0 69.6 5.0 76.6

TABLE II: Processing Time (Unit: ms).

C. Overall Performance

Tracking Accuracy. In this part, we evaluate the tracking
accuracy of SparseTrack. We evaluate the scenarios with 1,
2, 3, and 4 users respectively. Each volunteer sat 1 m away
from the speakers with a 30◦ bearing angle. They were asked
to draw different shapes over templates using their hands. The
drawing samples include simple shapes like triangle, circle and
complex shapes like letters and Arabic numbers are shown in
Fig. 9, where the red lines indicate ground truth while the
black ones indicate the outputs of our tracking system.

Fig. 12a shows the cumulative distribution function (CDF)
of the tracking errors for the cases of 1 to 4 users. The mean
errors are 0.82 cm, 1.09 cm, 1.90 cm, and 2.66 cm respectively.
Thus, our system can support fine-grained gesture tracking
even when four users perform gestures simultaneously. We
then evaluate four practical impact factors in the following.

Impact of Sensing Ranges. We ask two volunteers to draw
shapes under default settings with various ranges to the smart
speaker from 0.5 m to 2 m. The mean and variance of tracking
error at different ranges are shown in Fig. 12b. The tracking

1Since the OFDM symbol is 20 ms, we can process one out of four OFDM
symbols for the four user case. 80 ms per location sample is sufficient for
most tracking applications.



performance degrades when the range increases. The mean
tracking error increases to 4.24 cm at 2 m. The reason behind
this is the SNR of reflection signals drops rapidly with the
increase of sensing range, which is a common issue for device-
free sensing systems.

Compared with the performance of RTrack [2], another
reason limiting the range of SparseTrack is the microphone
orientation. RTrack uses self-made microphones which orien-
tate to the direction of the reflection. However, the orientation
of our commercial mic-array is upward. The microphone
directivity weakens the received signal. Based on the current
settings, our system can provide good tracking performance
within 1.5 m, which can be easily improved by using mic-
arrays with more suitable packaging format.

Impact of Sensing Directions. We ask one volunteer to
sit at 345◦ and another one to sit from 0◦ to 330◦ with a
step size of 30◦. Fig. 12c shows the CDF of the tracking
errors for the cases of 0◦ to 330◦. As the CDFs have similar
trends and the mean errors are all around 1.0 cm, SparseTrack
achieves stable performance across different directions. This is
because SparseTrack adopts a circular speaker and microphone
array to support transmitting and receiving acoustic signals
for 360◦ directions, which is superior to linear- array-based
solutions Compared with existing methods like 2D MUSIC,
SparseTrack can work well on commercial smart speakers with
uniform circular mic-array to support omnidirectional device-
free gesture tracking.

Impact of Ambient Locations. We evaluate the system
performance at four typical indoor scenarios: the lab, the
conference room, the corridor, and the office, with different
space span and density of furniture. The mean and variance of
tracking error at different locations are shown in Fig. 12d. It is
seen that the mean errors are all around 1.0 cm across different
locations with different degrees of space crowdedness. Thus,
our system can be deployed in common indoor scenarios to
achieve robust tracking performance for various applications.
This is because the interference cancellation effectively re-
moves the reflections from static objects in the environment.

Impact of Ambient Sound. We test three types of ambient
sound in daily lives, including talking, decoration, and music,
with typical decibel levels of 60 dB, 70 dB, and 78 dB
respectively. We play the sound sources with a loudspeaker
and place it 0.5 m away from the mic-array of the smart
speaker. As shown in Fig. 12e, our system has tracking errors
around 1.0 cm under the impact of different ambient sounds,
which indicates that the tracking performance of SparseTrack
is not affected by the noise. Although the decibel levels of
ambient sound are high, our tracking system utilizes ultrasonic
frequencies and filters out the non-ultrasonic ones. Thus, it
works robustly in most indoor scenarios.

VII. CONCLUSION

In this work, we propose SparseTrack to achieve fine-
grained multi-user device-free gesture tracking on today’s
smart speakers with uniform circular geometry. We cast
device-free tracking to sparse recovery intuition to address

signal coherence issues on circular mic-arrays. We address
practical challenges on the insufficient spatial sampling rate,
doppler effect, and trace extraction and implement Sparse-
Track on COTS circular mic-array.
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