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Abstract—Head tracking is a technique that allows for
the measurement and analysis of human focus and attention,
thus enhancing the experience of human-computer interac-
tion (HCI). Nevertheless, current solutions relying on vision
and motion sensors exhibit limitations in accuracy, user-
friendliness, and compatibility with the majority of commercial
off-the-shelf (COTS) devices. To overcome these limitations,
we present EHTrack , an earphone-based system that achieves
head tracking exclusively through acoustic signals. EHTrack
employs acoustic sensing to measure the movement of a pair
of earphones, subsequently enabling precise head tracking.
In particular, a pair of speakers generates a periodically
fluctuating sound field, which the user’s two earphones detect.
By assessing the distance and angle alterations between the
earphones and speakers, we propose a model to determine the
user’s head movement and orientation. Our evaluation results
indicate a high degree of accuracy in both head movement
tracking, with an average tracking error of 2.98 cm, and head
orientation tracking, with an average error of 1.83 degrees.
Furthermore, in a deployed exhibition scenario, we attained an
accuracy of 89.2% in estimating the user’s focus direction.

I. Introduction
Head orientation provides valuable information about

people’s intentions, as individuals generally turn their
heads towards the desired direction to observe what
interests them. Consequently, head tracking plays a crucial
role in human-computer interaction applications, such as
tracking users’ attention during webpage browsing for con-
tent customization or tracking user attention for exhibit
introduction in museums. An accurate, user-friendly, and
widely applicable head tracking solution compatible with
commercial off-the-shelf (COTS) devices is desired for
daily use.
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Existing head tracking systems cannot fully achieve the
desired goal. For vision-based solutions, prior works [1]–
[4] leveraged cameras to capture images of the human
head for tracking, which requires users to sit in front
of the cameras and does not work in mobile scenarios.
Consequently, [5] proposed mounting cameras on headsets
or smart glasses to infer head orientation from videos
under a first-person perspective. However, wearing these
devices in daily scenarios is inconvenient, uncomfortable,
and raises potential privacy concerns. Motion sensor-
based solutions [6]–[8] utilize Inertial Measurement Units
(IMUs), including an accelerometer, a gyroscope, and
a magnetometer, to track head movement. These solu-
tions are more cost-effective and lightweight compared to
vision-based ones. However, we note that the majority of
commercially available earphones, such as the Sony WF-
1000XM4 [9] and Bose QuietComfort Earbuds [10], do
not come equipped with IMUs. As a result, IMU-based
solutions are currently incompatible with most COTS
earphones.

To address this gap, we identify that the earphone-based
approach holds great potential for achieving user-friendly
and widely applicable head tracking. It is increasingly
common to wear wireless earphones in daily scenarios, such
as watching videos on a laptop or exploring an exhibition.
Compared to a bulky headset-based solution, an earphone-
based system is more user-friendly and versatile. The
advantage of earphone-based head tracking lies in the
relatively fixed location of the earphones with respect to
the head, as they move and rotate in tandem with the
head. As illustrated in Fig. 1, a user wearing a pair of
earphones is looking at points A, B, and C. When the
user turns from looking at A to B, both earphones move
and rotate accordingly. Consequently, we can enable head
tracking by accurately tracking the earphones. The appro-
priate sensing modality for the earphone-based solution
still needs to be considered. Acoustic signals are suitable
since the required sensors, speakers, and microphones are
commonly available in earphones and relevant scenarios.
As depicted in Fig. 1, with speakers deployed in the
environment, earphones can utilize their microphones to
receive anchor signals for continuous localization and
tracking. In this way, we can transform these earphones
into HCI-compatible devices.

In order to achieve accurate earphone-based head track-
ing, we must overcome three main challenges. First,
we need a robust method capable of accurately and
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(a) A person looks at object A. (b) A person looks at object B. (c) A person looks at object C.

Fig. 1: An illustrated scenario of human attention.

simultaneously tracking two earphones in motion. This
can be challenging due to environmental factors that
affect acoustic signals, resulting in poor signal quality and
making it difficult to accurately derive angle and distance
measurements. While numerous recent works [11]–[13]
focus on acoustic-based tracking for a single device, such
as a speaker or microphone, limited research has been
conducted on tracking two microphones simultaneously to
enable precise head tracking. Second, achieving accurate
earphone-based head tracking necessitates the establish-
ment of an accurate relationship model between the head
and the earphones. This model allows us to transform
the earphones’ tracking results into head movement and
orientation accurately. Furthermore, since tracking the
movement of the earphones is not entirely precise, a reli-
able head tracking model that is robust against earphone
tracking errors is required. Third, we need an effective
method to determine the initial location, providing a
starting point for the tracking system. It is crucial that
this method is not only effective but also minimally
burdensome for the user.

To address the aforementioned challenges, we propose
EHTrack , an Earphone-based Head Tracking System that
derives the position and orientation of the head using
only acoustic signals collected by a pair of earphones. We
require only that the earphones be equipped with micro-
phones, which are compatible with most COTS devices. As
a result, EHTrack significantly improves the availability of
head tracking in daily scenarios. In our proposed system,
we design strength-based angle tracking and phase-based
distance tracking to determine the movement of the ear-
phones. Specifically, a pair of speakers in the environment
will play sine waves at different frequencies, allowing the
superposition of these waves to generate a periodically
changing sound field. It is worth noting that we employ an
ultrasound frequency above 18 kHz, which is uncommon
in everyday scenarios, to effectively mitigate the impact
of external disturbances on the tracking process. We then
leverage specially designed patterns of acoustic strength to
enable robust inference of the angle and distance changes
of the earphone (microphone) relative to the sound gen-
erators within the sound field. To accommodate multiple
users simultaneously in our targeted application scenario,
such as exhibitions, we have opted to use Continuous Wave
(CW) signals instead of FMCW or Zadoff-Chu signals

to alleviate the burden of synchronization. Our system,
in theory, can support an unlimited number of receivers
operating simultaneously. Next, we derive an analytic
model to explicitly characterize the relationship between
ear movement and head movement/orientation. Based on
this model, we can transform the distance and angle
estimations of the two earphones into head movement and
orientation, thereby achieving head tracking. Additionally,
we design a convenient method to obtain the initial
location. This method involves simply asking the user
to stand still and rotate their head by a certain angle.
EHTrack will detect the rotation and assume that there is
no movement but only rotation, allowing us to derive the
initial location using our proposed model. This method
is easy for users to perform and does not require any
additional hardware for initial location estimation.

Our contributions are summarized as follows:
• We propose EHTrack, an accurate and user-friendly

earphone-based head tracking system that is widely
applicable in daily scenarios and COTS devices. To
the best of our knowledge, EHTrack is the first purely
acoustic-based head tracking system.

• We design a special sound field excitation scheme and
integrate strength-based angle tracking and phase-
based distance tracking methods. As a result, we track
a pair of earphones accurately and simultaneously,
overcoming the challenges posed by environmental
factors that can affect acoustic signals. Additionally,
we establish an analytic model that can transform
the movement of the earphones into head move-
ment/orientation accurately.

• We have implemented EHTrack on COTS devices
and conducted extensive evaluations to assess its
effectiveness. Our results demonstrate that EHTrack
achieves accurate head tracking with an average
tracking error of 2.98 cm and an orientation tracking
error of 1.83 degrees. Furthermore, in a deployed
exhibition scenario, we achieved attention direction
estimation with an 89.2% accuracy rate. Furthermore,
we conducted a thorough examination of the influence
of various environmental factors. This analysis en-
compassed different touring scenarios, diverse users,
environmental noise levels spanning from 40 dB to
80 dB, as well as spaces of varying sizes. These
results demonstrate the effectiveness, robustness and



3

Fig. 2: System Overview.

potential of EHTrack as an alternative to existing
head tracking solutions.

The rest of this paper is organized as follows: We
elaborate on the technical design of EHTrack in Section II.
We describe the detailed implementation of EHTrack in
Section III. We evaluate the system performance in Section
IV. We review related works in Section VI. Finally, we
discuss the limitations and conclude our paper in Section
V and Section VII.

II. System Design of EHTrack
In this section, we first provide an overview of the

system and its components. Subsequently, we describe the
process of deriving angle and distance changes by utilizing
specially designed patterns of acoustic strength. We then
present our model for transforming earphone movements
into head movements. Furthermore, we introduce the
approach employed to determine the initial location of
the user. Finally, we summarize the key aspects of our
system to facilitate a comprehensive understanding of its
overall functionality.

A. System Overview
Fig. 2 presents an overview of our system, which com-

prises two parts: the ”Transmitter End” and the ”Receiver
End”.

At the Transmitter End, two speakers play sine waves
at distinct frequencies. Upon the superposition of these
two sine waves, a periodically changing sound field is
generated. The estimation of angle and distance is based
on this sound field.

At the Receiver End, the strength of the sound field
is captured by two microphones. Initially, pre-processing
is applied to eliminate noise. Subsequently, we derive the
angle and distance from each microphone. We then utilize
the angle and distance tracking results to determine head

movement and orientation. Ultimately, we achieve head
tracking based on the aforementioned tracking results.

In the following two subsections, we will introduce the
method for deriving angle and distance from acoustic
signals.

B. Strength-based Angle Tracking
Angle tracking is achieved through a periodically chang-

ing sound field [14]. In our system, we employ two speakers
to generate the sound field, with each speaker emitting
sine waves at specific frequencies. One speaker emits a
sine wave at frequency f1, while the other emits a sine
wave at frequency f2. The superposition of these two sine
waves generates the sound field. A microphone within the
sound field can detect the sound strength resulting from
the superposition of the two sine waves.

If the phase difference between these sine waves is 0,
they are in phase, and constructive interference occurs,
causing the microphone to detect a large sound strength.
Conversely, if the phase difference is π, they are out of
phase, and destructive interference occurs, leading the
microphone to detect a small sound strength. In essence,
the strength distribution of the sound field is uneven due
to the phase difference. Fig. 3 provides an example of
the sound field, where bright areas indicate large sound
strength and dark areas signify small sound strength.

If f1 = f2, the phase difference is solely caused by
location differences, resulting in a static sound field, as
depicted in Fig. 3. If f1 ̸= f2, however, the phase difference
is caused by both location and time, creating a dynamic
sound field. In practice, the sound field appears to ”rotate”
around the center.

In a rotating sound field, a static microphone within the
sound field detects changes in strength. The frequency of
this strength is denoted by f0 = |f1 − f2|. Fig. 4 provides
an example of a received signal when f1 = 50Hz and
f1 = 55Hz. The blue line represents the received signal,
and the orange line illustrates the envelope. The envelope
corresponds to the sound strength, which we utilize to
derive the strength period. If the microphone is moving,
the observed frequency of the sound field strength change,
fobs, will differ from f0. Consequently, the period Tobs

will also differ. Fig. 5 displays an example of a moving
microphone, where the frequency of the signal strength
is smaller than f0, and the period Tobs is larger than
the standard period T0 = 1

f0
. Similarly, if the movement

direction is reversed, we will observe a larger frequency
and a smaller period, as shown in Fig. 6. By calculating
the period difference ∆T , we can determine the angular
speed and ultimately achieve angle tracking.

C. Phase-based Distance Tracking
Phase-based distance tracking is an efficient and accu-

rate method, which is why we have chosen to use it for
distance tracking.

Phase-based distance tracking utilizes the phase of
a sound wave to track distances. Previous works [15],
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field.
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Fig. 4: Received signal with
standard strength period.
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Fig. 5: Received signal with
larger strength period.
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Fig. 6: Received signal with
smaller strength period.

[16] have successfully implemented millimeter-level motion
tracking based on acoustic phase. In our system, we
employ a single-frequency sine wave to measure distance.
If there is a speaker emitting a sine wave and a microphone
receiving it, the distance between them can be calculated
as d = λ∗(N+ ϕ

2π ), where λ represents the wavelength, N
is an integer, and ϕ is the phase, ranging between 0 and
2π. As the distance d changes, the phase ϕ also varies. By
determining the phase change, we can obtain the distance
change and achieve distance tracking. Further details are
provided below.

The received signal can be expressed as follows:

Sr = Acos(2πft− 2πf
d(t)

vs
+ ϕ) (1)

Wherein, A is the amplitude of the signal, f is the
frequency of the signal, t is the time, and ϕ is a constant
phase offset. In this context, vs denotes the speed of sound,
d(t) represents the distance travelled by the signal at time
t, and 2πf d(t)

vs
signifies the phase change caused by the

distance travelled.
First, we derive the phase from the received signal.

In our system, the received signal Sr contains two sine
waves at frequencies f1 and f2. To derive the In-phase
and Quadrature components, we multiply Sr by cosine and
sine functions at either frequency f1 or f2. For simplicity,
we use f1 without loss of generality.

Sr1,cos = Sr1 ∗ cos(2πf1t) (2)

Sr1,sin = Sr1 ∗ sin(2πf1t) (3)

From Equation 2, we get the In-phase component:

Sr1,cos = Sr1 ∗ cos(2πf1t)

= Acos(2πf1t− 2πf1
d(t)

vs
+ ϕ) ∗ cos(2πf1t)

=
1

2
A[cos(−2πf1

d(t)

vs
+ ϕ)

+ cos(4πf1t− 2πf1
d(t)

vs
+ ϕ)]

(4)

Next, we apply a low-pass filter to obtain the low-
frequency In-phase component, S′

r1,cos = cos(−2πf1
d(t)
vs

+
ϕ). Similarly, we can derive the Quadrature component,
S′
r1,sin = −sin(−2πf1

d(t)
vs

+ ϕ). The phase ϕd can be
derived using the following formula:

ϕd = arctan(
S′
r1,cos

S′
r1,sin

). (5)

To address the phase ambiguity problem, an ”unwarp”
operation is employed. Some phase points are adjusted by
adding a value of 2πN to ensure signal continuity. The
wavelength of the acoustic signal at frequency f1 is given
by:

λ = vs/f1, (6)

vs represents the speed of sound in air. The distance
tracking result is calculated using the following equation:

∆d =
ϕd2 − ϕd1

2π
∗ λ. (7)

Here, ϕd1 and ϕd2 represent the distance values before
and after the movement, respectively. When the phase
experiences a change of 2π, it corresponds to a change
in distance equal to the wavelength λ. In Section II-E,
we will introduce a dedicated scheme for determining
the initial location. By integrating this scheme with
the aforementioned derived results, our system achieves
effective distance tracking.

D. Head Movement and Orientation Estimation
After angle and distance tracking of earphones, we need

to know head movement and orientation from derived
tracking results. In this section, we will introduce how we
derive head movement and orientation from the above-
mentioned angle and distance tracking results.

We use the movement of two earphones to derive
head movement and orientation. When people wear two
earphones, the locations of the earphone microphones are
near people’s ears. Thus, we can regard the movement
of the earphones as the movement of the ears. In the
rest of this section, we will introduce how we derive head
movement and orientation from ear movement.

Fig. 7 provides an overview of the setup. S1 and
S2 represent two speakers, while M1 and M2 are two
microphones placed on human ears. We consider the
microphones as two ends of a bar with length L, and the
person’s location at the center of the bar (X,Y ). The bar’s
orientation is denoted by θ. By applying simple geometry,
we can determine the locations of the two microphones M1
and M2 M2 follows:
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Fig. 7: Head movement and orientation.

M1(X + Lsin(θ +
π

2
), Y + Lcos(θ +

π

2
))

M2(X + Lsin(θ − π

2
), Y + Lcos(θ − π

2
))

Next, we consider a movement from Location1 to
Location2. Assume that the angle change of M1 and M2
are ∆α and ∆β, and the distance change of M1 and M2
are ∆dM1 and ∆dM2. Note that the angle and distance
changes are relative to the origin (0, 0).

During the movement, we assume that the location and
orientation changes are ∆X,∆Y and ∆θ. Consequently,
the new locations of M1′ and M2′ are:

M1′(X+∆X+Lsin(θ+
π

2
+∆θ), Y+∆Y+Lcos(θ+

π

2
+∆θ))

M2′(X+∆X+Lsin(θ−π

2
+∆θ), Y+∆Y+Lcos(θ−π

2
+∆θ))

To simplify the expression, we set the old locations
as M1(XM1, YM1) and M2(XM2, YM2). Thus, the new
locations are M1′(XM1′ , YM1′) and M2′(XM2′ , YM2′). The
following relationships are then established:

XM1 = X + Lsin(θ +
π

2
) (8)

YM1 = Y + Lcos(θ +
π

2
) (9)

XM2 = X + Lsin(θ − π

2
) (10)

YM2 = Y + Lcos(θ − π

2
) (11)

XM1′ = X +∆X + Lsin(θ +
π

2
+ ∆θ) (12)

YM1′ = Y +∆Y + Lcos(θ +
π

2
+ ∆θ) (13)

XM2′ = X +∆X + Lsin(θ − π

2
+ ∆θ) (14)

YM2′ = Y +∆Y + Lcos(θ − π

2
+ ∆θ) (15)

We can list four equations:

(−arctan
XM1′

YM1′
)− (−arctan

XM1

YM1
) = ∆α (16)

(−arctan
XM2′

YM2′
)− (−arctan

XM2

YM2
) = ∆β (17)√

X2
M1′ + Y 2

M1′ −
√
X2

M1 + Y 2
M1 = ∆dM1 (18)√

X2
M2′ + Y 2

M2′ −
√
X2

M2 + Y 2
M2 = ∆dM2 (19)

In these equations, we know the initial location X,Y, θ,
and angle/distance changes ∆α,∆β,∆dM1,∆dM2. By
solving equations 16 to 19, we can obtain the location
and orientation changes ∆X,∆Y,∆θ. These changes in
location and orientation represent the movement of the
head.

E. Initial Location Derivation
To initialize the head tracking system, we require the

user to stand in front of the speaker and rotate their head
without moving. While some motion tracking systems
necessitate users to move in a specific direction or distance
for initialization, we find that this approach can be
challenging for users to execute accurately. Instead, we
leverage our head tracking model to derive the initial
location and orientation of the user through head rotation.

In the head tracking scenario, we have access to mea-
surements of X,Y, θ,∆α,∆β,∆dM1,, from which we can
derive ∆X,∆Y , and ∆θ. When determining the initial
location, we capture the rotational movement of the user’s
head. Since there is no change in location during this type
of movement, we know that ∆X and ∆Y are both zero.
By solving the equations derived in Equations 16 through
19, we can derive X and Y . To improve the accuracy
of the results, we use multiple rotational movements and
calculate the average results of X and Y . By employing
this approach, we can obtain an accurate initial location
and orientation for the head tracking system without
requiring users to perform specific movements or navigate
to a particular location.

F. Putting it all together
In this section, we provide a comprehensive description

of our system’s design. An overview of the system is
depicted in Fig. 2. We will discuss the design process for
both the ”Transmitter End” and the ”Receiver End.”

1) Transmitter End: Our system is based on acoustic
signals. The initial task for our system is to generate a
sound field. As outlined in Section II-B and Section II-C,
we need to emit two sine waves at frequencies f1 and f2.
Superposition occurs, resulting in a sound field with an
uneven strength distribution. Due to the phase difference
between the two sine waves, both constructive and de-
structive interference take place within the sound field. If
f1 = f2, the sound field remains static, as illustrated in
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Fig. 3. If f1 ̸= f2, the sound field becomes dynamic and
appears to ”rotate” around the center.

In our system, we opt to utilize two distinct frequencies.
Consequently, even if the microphone within the sound
field remains stationary, it can still detect changes in the
sound field’s strength.

When determining which frequencies to use, various
factors must be taken into account. On one hand, the
frequency should be high enough to be classified as
ultrasound and remain inaudible to humans. Generally,
humans cannot hear acoustic signals with frequencies
above 17 kHz. On the other hand, typical speakers exhibit
poor frequency response in high-frequency bands. This
implies that emitting a very high-frequency signal may
result in a significantly reduced signal strength. A speaker
is capable of emitting frequencies below 21 kHz. Signals
at lower frequencies, such as 18 kHz, possess much greater
strength than those at 21 kHz. Ultimately, we choose to
set f1 = 18kHz and f2 = 18.1kHz. These frequencies are
inaudible to humans and exhibit a robust strength capable
of supporting large-distance sensing.

With the generated sound field, we can further de-
rive angle and distance measurements from the acoustic
strength.

2) Receiver End: The receiver end comprises sev-
eral components: pre-processing, angle tracking, distance
tracking, and head tracking. We will discuss each of these
components in detail.
Pre-processing:

Upon receiving the signal, it first undergoes pre-
processing by being filtered with a high-pass filter to
remove noise. Most daily-life voices have frequencies lower
than 10 kHz. A high-pass filter can effectively eliminate
these noises. Our system employs frequencies near 18 kHz.
As a result, a high-pass filter with a cut-off frequency
of 15 kHz is utilized, which removes noise and relatively
enhances the signal.
Angle Tracking: As described in II-B, angle informa-
tion is extracted from the period difference, denoted
as ∆T = Tobs − T0. Here, T0 represents the period
when the microphone is static, which can be calculated
by T0 = 1

|f1−f2| . Tobs refers to the period we actually
observe. Consequently, to obtain ∆T , the crucial aspect
of angle estimation involves determining the period Tobs.
We follow several steps to accurately determine Tobs, in-
cluding strength derivation, period calculation, and angle
estimation.

Strength Derivation. The initial step in angle estimation
involves determining the received signal strength. For
acoustic signals, we consider the average square sum of
the signal waveform as the signal strength. Consequently,
we need to calculate the average square sum of the
received signal. The frequency of the received signal is
approximately 18 kHz, and the sampling frequency in our
system is 48 kHz. Therefore, there are 48/18 = 2.67 points
in each period. We can calculate the strength of each
period; however, this may not be sufficiently accurate
due to the presence of only 2.67 points in each period.

Instead, we opt to use the strength of multiple periods. We
calculate one strength value from 12 points by determining
the average square sum of these 12 points as the strength.
A group of 12 points, containing more than four periods,
is accurate enough to indicate the strength.

Interval Calculation. After obtaining the strength of the
received signal, we begin identifying the observed period,
Tobs, of the signal strength.

We discover that the signal strength is the absolute
value of a cosine wave. As Fig. 4 illustrates, the red line
represents the strength of received signals. Consequently,
the valleys are sharp and easier to identify. By determining
the index of these valleys, the strength period is calculated
based on the index difference, allowing us to obtain the
observed strength period, Tobs.

Angle Estimation. Having obtained Tobs and the stan-
dard period T0 = 1

|f1−f2| , we can calculate ∆T = Tobs−T0.
By applying the algorithms presented in work [14], we
achieve angle tracking.
Distance Tracking: We employ a phase-based method for
distance estimation. A detailed mathematical description
of phase-based distance estimation is provided in Section
II-C.

Frequency Separation. First, we use a band-pass filter
to reduce the influence of other frequencies. The received
signal contains two sine waves, but distance estimation
requires only one of them. Therefore, we apply a band-
pass filter initially.

Phase Derivation. This step involves obtaining the
phase from the received acoustic signal. According to
Equations 2 and 3, we multiply the received signal, Sr,
by sine and cosine waves. The frequency of the sine and
cosine waves can be either f1 or f2. To improve accuracy,
we perform distance estimation for both f1 and f2. Then,
we apply a low-pass filter to derive the phase. Finally,
an ”unwrap” function is used to make the derived phase
continuous.

Distance Estimation. Using Equation 7, we establish
a relationship between phase and distance. With the
phase derived in the previous step, we calculate the
corresponding distance using Equation 7.
Head Tracking: After obtaining angle and distance track-
ing results, we derive head tracking results from them.

In Section II-D, we provide a detailed mathematical
description of how we derive head movement and ori-
entation. Given the known angle and distance changes,
∆α,∆β,∆dM1,∆dM2, as presented in Equations 16 to 19,
we can derive head movement ∆X,∆Y and orientation
∆θ.

III. Implementation

In our system, the transmitter consists of a simple
stereo speaker, while the receiver is implemented based
on the Respeaker Kit [17]. A more detailed explanation
of the system’s implementation will be provided in the
subsequent sections.
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Fig. 8: Transmitter Device. Fig. 9: Receiver Kit.

A. Transmitter
For the transmitter, the speaker is required to simul-

taneously play two sine waves. To achieve this, we utilize
stereo mode to control a pair of speakers. The majority
of modern audio systems support stereo mode playback,
which comprises a left and a right channel. This enables
the easy playback of a sine wave at frequency f1 in one
speaker and another sine wave at frequency f2 in the
other speaker. Once the speaker setup is complete, the
frequencies f1 and f2 remain constant, allowing for the
played signal to be either pre-generated or generated in
real-time. For convenience, we employ a pre-generated
file in the form of a .wav file. Our transmitter system
is compatible with most audio devices.

A laptop serves as the speaker controller, with its
primary function being the playback of the pre-generated
two-channel audio file. The speaker used is the ”Philips
SPA20,” as illustrated in Fig. 8. This compact and
affordable speaker operates in stereo output mode and
plays sine waves at distinct frequencies. Both speakers are
positioned in close proximity, with a separation distance of
approximately 8 cm. This 8-cm separation represents the
minimum distance achievable with the ”Philips SPA20”
speaker.

B. Receiver
We employ a Respeaker Kit [17] to facilitate two-

channel recording. Currently, commercial true wireless
earbuds, such as the Sony WF-1000XM3 [18], feature a
microphone in each earphone. These wireless earphones,
whether left or right, can operate independently. However,
due to Bluetooth limitations, earphones cannot transmit
dual recording signals to a smartphone simultaneously.
Therefore, we modify the Respeaker Kit to achieve simul-
taneous two-channel recording. Our modifications involve
replacing the original microphone while retaining the
amplifier and ADC components of the kit, which are
straightforward to implement. We anticipate that as more
applications come to rely on dual earphone functionality,
Bluetooth will eventually support simultaneous recording.

The implemented receiver is depicted in Fig. 9. We have
designed an adapter board to connect the microphones.
This design allows for the microphones to be wired
out and placed freely, providing the ability to attach
them to earphones. The kit can accommodate up to
six microphones, although our system only requires two.

In Fig. 9, two microphones (model SPU0414HR5H-SB)
are connected to the board, enabling the simultaneous
recording of signals from both microphones. These two
microphones are attached to a pair of earphones, making
them wearable for users.

IV. Evaluation
We carry out experiments to assess both movement

and orientation tracking. In Section IV-A, we evaluate
the accuracy of movement and orientation independently.
In Section IV-B, we set up a room to deploy an exhibition
scenario and assess the accuracy of attention estimation.

A. Evaluation of Movement and Orientation Tracking
To emulate the influence of the human head, we attach

the microphone to a pair of earphones and mount it on
a head model, as illustrated in Fig. 10. This setup will
be utilized in the evaluation of movement and orientation
tracking. Additionally, to ensure an accurate evaluation,
it is necessary to precisely control the movement. Con-
sequently, we employ a linear actuator with a stepper
motor for movement control, as demonstrated in Fig. 11 .
The platform’s movement accuracy is up to 0.03 mm. For
the evaluation of orientation accuracy, we use a separate
rotation platform, depicted in Fig. 12 and Fig. 13, which
is driven by a stepper motor. This rotation platform’s
accuracy is up to 0.008◦.

EHTrack employs strength-based angle tracking and
phase-based distance tracking to accomplish movement
tracking. As a result, movement accuracy may vary when
moving along the X/Y direction. We evaluate movement
accuracy along the X/Y-axis independently and subse-
quently assess rotation accuracy. The evaluation scenario
is consistent with that of Fig. 7.

Accuracy of movement parallel to X-axis. EHTrack
achieves a median error of approximately 4 cm when
moving parallel to the X-axis. We evaluate the accuracy
at varying distances between the user and the speaker
anchor. Fig. 14 displays the boxplot of the evaluation
results. The accuracy marginally declines as the distance
increases. This is because, with greater distance, the signal
strength decreases due to attenuation, and the signal-to-
noise ratio (SNR) also diminishes, resulting in a decrease
in accuracy. However, for EHTrack, even with decreased
accuracy, the estimation errors remain acceptable up to a
5-meter distance.

Accuracy of movement parallel to Y-axis. EHTrack
achieves a median error of approximately 2 cm when
moving parallel to the Y-axis. Fig. 15 presents the boxplot
of the evaluation results. We can also observe that move-
ment accuracy slightly decreases as the distance increases.
However, in comparison to movement parallel to the X-
axis, the accuracy of movement parallel to the Y-axis is
higher. This is because the accuracy of movement parallel
to the Y-axis relies more on distance estimation results,
while the accuracy of movement parallel to the X-axis
depends more on angle estimation results. Generally, in
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Fig. 10: Receiver attached to
the head model.

Fig. 11: Head model on the
movement platform.

Fig. 12: Rotation platform
for evaluation.

Fig. 13: Head model on the
rotation platform.
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Fig. 14: Estimation error of
movement parallel to X-axis.
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Fig. 15: Estimation error of
movement parallel to Y-axis.
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Fig. 16: Estimation error of
X-dimention while moving.
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Fig. 17: Estimation error of
Y-dimention while moving.
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Fig. 18: Estimation error of
rotation.
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Fig. 19: Estimation error of
rotation while moving.

terms of movement tracking, distance estimation is more
accurate than angle estimation. The average movement
error is 2.98 cm.

Accuracy of orientation tracking. EHTrack achieves a
median estimation error of less than 2◦ in rotation, as
Fig. 18 shows. The accuracy also declines as the distance
increases. At farther locations, the SNR is small, causing
the strength-based angle tracking to be less effective than
at closer locations. The overall error of orientation tracking
is 1.83◦.

Sensitivity. Based on the aforementioned results in
Fig. 14, Fig. 15 and Fig. 18, it is evident that our
system demonstrates satisfying sensitivity within a 5-
meter working range. Although the tracking error does
increase as the distance extends, this can be attributed to
the significant attenuation of sound waves. Nonetheless,
our results remain acceptable. It’s worth noting that the
detection range is influenced by the power of the speaker.
If a larger speaker power is permitted, it would lead to an
improved detection range and enhanced sensitivity.

Accuracy while moving. In addition to evaluating the
accuracy in each dimension, we assess the accuracy while
the head is both moving and rotating. As Fig. 16 and
Fig. 17 shows, the accuracy slightly decreases compared

to single-dimension evaluation, with the average accuracy
being approximately 10% - 20% lower due to movement
interference. Also, for the rotation tracking error, as Fig.
19 shows, it suffers a decrease in accuracy, too. And due
to the influence of moving, the data is not stable as tested
when there is only rotation. Despite the reduced accuracy,
it remains acceptable for attention estimation.

Comparison with IMU-based solution. We compared
our system with a well-established IMU-based system,
Ear-AR [8]. To ensure fair comparision, we employed a
similar evaluation setup as Ear-AR, wherein a user walked
within a room while their path was recorded as the ground
truth, utilizing a camera for error estimation. It is worth
mentioning that we chose not to perform any halfway
calibration for both EHTrack and Ear-AR in order to
maintain a good user experience and enable an effective
comparison between the two systems. It is worth noting
that EHTrack achieves an average tracking error of 1.14
meters over a distance of 50 meters, surpassing the 3-meter
error exhibited by Ear-AR. However, over a distance of
100 meters, EHTrack’s average tracking error measures
7.56 meters, slightly exceeding the 5-meter error associated
with Ear-AR. Nevertheless, we argue that the performance
in the closer proximity range holds greater significance for
the exhibition scenario we consider, as illustrated in Fig. 1,
where individuals typically move around the objects on
display. Additionally, EHTrack relies solely on acoustic
signals, which enhances its compatibility with a wide
range of Commercial Off-The-Shelf (COTS) earphones,
including Sony WF-1000XM4 and Bose QuietComfort
Earbuds, as it eliminates the need for IMUs required by
the Ear-AR solution.
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B. Evaluation of Attention Estimation in Deployed Exhi-
bition Scenario

To better evaluate system performance in a real head
tracking scenario, we deploy an exhibition setting and
assesses the accuracy of attention estimation.

As depicted in Fig. 20, ten labels, ranging from ”A” to
”J”, were used to emulate exhibits. Five of these labels
were mounted on the wall to represent paintings, while the
other five were placed on a table to represent showcases.

One challenge in this setup is that a microphone may
not consistently receive the sound field from a single pair of
speakers. That is, Non-Line-of-Sight (NLOS) scenes occur.
Furthermore, the tracking ability of one earphone may be
compromised, resulting in the system’s failure to derive
head movement and rotation. To address this issue, we
installed two pairs of speakers in the room. Our system
leverages single frequency acoustic signals, which avoids
frequency overlap and enables the deployment of multiple
speakers in one room. As depicted in Fig. 20, the two pairs
of speakers are positioned at opposite ends of the room
to ensure comprehensive sound field coverage. Each pair
operates on distinct frequencies, ensuring no interference
between them. In the event of microphone occlusion, a fre-
quency switch occurs, allowing the microphone to receive
input from the alternate pair of speakers. Participants
were instructed to walk around the room and view the
various labels. We recorded the labels that were observed
by the participants and compared these findings with
EHTrack’s output to determine the accuracy of attention
estimation.

Impact of touring trajectory. We designed six distinct
scenarios for the experiment:

(1) The user remains stationary, standing without
movement.

(2) The user walks in a straight line, maintaining their
gaze forward.

(3) The user stands 2 meters away from the wall-
mounted labels (”A” to ”E”) and focuses on them.

(4) The user stands 5 meters away from the wall-
mounted labels (”A” to ”E”) and focuses on them.

(5) The user stands 2 meters away from the table-
mounted labels (”F” to ”J”) and focuses on them.

(6) The user walks to a designated location and turns
to concentrate on the wall-mounted labels.

The accuracy of attention estimation for the six sce-
narios is presented in Fig. 22. A total of 462 attention
events were recorded, yielding an overall accuracy of 89.2%
In Scenario 1, all standing still events were correctly
detected. In Scenario 2, 87.5% of walking events were
detected. Scenarios 3 and 4 are quite similar, with the
only difference being the distance from the labels. The
attention estimation accuracy in Scenario 4 is lower than
that in Scenario 3 because the increased distance results
in lower accuracy, even when the angle accuracy remains
consistent. The evaluation in Scenario 5 closely mirrors
that of Scenario 3, and consequently, the accuracy is
similar. Scenario 6 has the lowest accuracy at 80.6%, as
both movement and rotation are present in this scenario,

(a) Evaluation scenario.

(b) Platform Layout.

Fig. 20: Evaluation scenario of attention estimation.

causing the frequency switch to generate higher tracking
errors.

Impact of user. Fig. 23 displays the attention estimation
accuracy for different users, ranging from 84.4% to 93.5%.
The observed variations may be attributed to users’ unique
walking patterns and orientation habits. Some users walk
and rotate more quickly than others, leading to increased
tracking errors and reduced accuracy. However, all users’
accuracies exceed 80%, demonstrating the viability of this
approach in an exhibition setting.

Impact of speaker placement. The height of the speakers
may impact the sound field and, consequently, affect the
system’s accuracy. To evaluate the influence of speaker
height on system performance, we mounted the speaker
anchor at varying heights: 0, 0.5, 1, and 1.5 meters. At
each height, we tested 30 attention cases to determine if
the system could accurately detect them. Fig. 24 presents
the results for the different heights. When the speaker is
at a height of 1.5 meters, the system achieves an accuracy
of 90%. Similar accuracy is observed when the height is 1
meter. However, the accuracy decreases when the speaker
is at 0.5 meters. Moreover, when the speaker anchor is
placed on the ground, the accuracy drops to less than
50%. In this case, the system does not perform well due
to the significant height difference and interference caused
by the ground. Taking into consideration that the height of
a human ear (or earphone) typically falls within the range
of 1.5 to 2 meters, our results indicate that our system
achieves satisfactory performance when the speaker is in
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close alignment with the typical height of human ears, and
a significant height difference between the speaker anchor
and the earphone may lead to reduced accuracy. Regarding
the separation between two speakers in EHTrack , it does
not exert a substantial influence on accuracy as indicated
in [14]. Therefore, we believe that our system exhibits
reasonable flexibility in terms of speaker placement.

Impact of environmental noise level. We also evaluated
the influence of environmental noise on system perfor-
mance. To simulate a noisy environment, we played loud
music while the system was operating. The noise strength
was measured using a decibel meter, and we maintained
noise levels between 40 and 80 dB. The background noise
was approximately 35 dB. Fig. 25 displays the accuracy
at different environmental noise levels. As the noise level
increases, the accuracy decreases.

Our system relies on acoustic signal strength, and while
pre-processing is employed to remove noise, it cannot
entirely eliminate the impact of environmental noise.
Consequently, the system is still significantly affected by
high levels of noise. However, it is important to note that
noise levels exceeding 70 dB are not common in everyday
activities. As such, our system can function effectively in
most typical environments.

Impact of space size. We conducted evaluations in
four spaces of varying sizes to assess the robustness of
our system, taking into account the presence of different
degrees of multi-path effects.

Space 1: a 6m x 10m meeting room depicted in Fig. 20;
Space 2: a 2m x 6m room with an array of objects

within;
Space 3: a 5m x 5m semi-open space;
Space 4: an outdoor space;
In Space 1, our system demonstrated impressive results,

achieving an attention estimation accuracy rate of 92.1%.
In Space 2, which is a more compact environment, the
accuracy rate decreased to 70.3%. This reduction in accu-
racy can be attributed to the presence of severe multipath
effects and interference, which result in significant tracking
errors and degrade the accuracy of attention estimation.
In Space 3, our system achieved an accuracy rate of
85.9%, surpassing the results obtained in the smaller room.
During the outdoor evaluation in Space 4, our system
achieved an accuracy rate of 90.6%.

EHTrack exhibits a decrease in accuracy within the
smallest room, i.e., Space 2, due to the presence of clutter
and pronounced multipath effects and interference in the
limited space. Obstacles that completely obstruct the
signals could be a nearly intractable issue for acoustic-
based solutions due to the inherent limited penetrative
ability of sound waves. However, we argue that our
intended exhibition scenario typically encompasses rela-
tively spacious areas, more akin to Space 1, 3, and 4,
where EHTrack attains satisfactory performance.

V. Discussion and Limitation
EHTrack achieves a head tracking system based on only

acoustic signals. Although EHTrack makes it possible for

cheap and convenient head tracking, there are still some
limitations.

EHTrack requires a map to build a relation between
user heading and objects. Our system derives earphones
movements relative to speaker anchor. We should know
the information of surroundings to map user’s heading to
a specific object.

It is important to note that EHTrack is currently only
able to achieve 2D head tracking. While our system is
able to track both head movement and orientation using
two earphone microphones, it is not able to track head
movements in the up/down direction.

Due to limitations in Bluetooth technology, EHTrack
is currently unable to be implemented on commercial
wireless earphones, even though they already have the
necessary hardware, including two microphones. However,
we believe that as applications using both earphone micro-
phones become more prevalent, Bluetooth will eventually
support the recording of two signals.

VI. Related Works
In this section, we provide a concise review of the

existing literature on head tracking and acoustic sensing.
We categorize head tracking research based on the vari-
ous implementation methods employed. Additionally, we
discuss notable studies within the field of acoustic sensing.

A. Head Tracking
Head tracking plays a crucial role in human-computer

interaction by tracking human attention and enabling
computers to discern users’ intentions. In this section,
we discuss notable works on vision-based and IMU-based
head tracking.

1) Vision-based head tracking: Numerous head tracking
systems are implemented using cameras [19], [20], which
capture images of the human head. These images contain
abundant information about the head, allowing for the
derivation of head orientation and position.

Basu et al. [1] propose a robust method for tracking
rigid head motion from video. Their approach employs a
3D ellipsoidal model of the head and interprets optical flow
in terms of the possible rigid motions of the model. This
method enhances robustness, even in cases of low frame
rates and noisy camera images. Tan et al. [2] adopt a long
short-term memory (LSTM) based approach, wherein they
utilize signals of different modalities over time to estimate
continuous head orientations. HyHOPE [3] implements a
head orientation and position estimation system for driver
head tracking using a single video camera. The tracking
module provides a fine estimate of the 3D motion of the
head. hMouse [4] further translates head tracking results
into a computer mouse, enabling hands-free interaction
with computers. However, camera-based head tracking
methods necessitate that the user remains within the
camera’s view, which may lead to privacy concerns and
limit the systems’ deployment.
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Fig. 21: Cumulative error
across walking distance.
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Fig. 22: Accuracy across dif-
ferent trajectory scenarios.
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Fig. 23: Accuracy across dif-
ferent users.
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Fig. 24: Accuracy across dif-
ferent speaker height.
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Fig. 25: Accuracy across dif-
ferent environment noise.
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Fig. 26: Accuracy across dif-
ferent sized spaces.

2) IMU-based head tracking: With the growing preva-
lence of wearable devices, inertial measurement unit
(IMU) sensors have emerged as a promising solution for
head tracking. These systems determine head movement
using accelerometers, gyroscopes, and magnetometers, al-
lowing for efficient and accurate head movement derivation
from a head-worn IMU.

Pedestrian dead-reckoning (PDR) has been extensively
researched in recent years [21]–[24]. These studies employ
IMUs located on the foot or within a smartphone to
achieve PDR, deriving body movement and orientation
rather than head orientation. Some works [6], [7] utilize
head-mounted IMUs for head tracking and attention
detection. Ear-AR [8] further accomplishes acoustic aug-
mented reality (AAR) through IMU-based head tracking,
using IMUs in earphones and smartphones to estimate a
user’s location and gazing orientation. Subsequently, it de-
livers 3D audio annotations to the user’s ears as they move
and observe AAR objects within the environment. Some
eye-gaze tracking systems [25], [26] also employ IMU-based
head movement compensation to enhance tracking accu-
racy. However, these IMU-based approaches necessitate
that users wear devices containing IMUs. Given that most
current earphones lack IMUs, this requirement presents a
significant barrier to adoption.

B. Acoustic Sensing
Acoustic sensing involves utilizing acoustic signals for

detection purposes. Many contemporary smart devices,
such as smartphones and earphones, are equipped with
speakers and microphones, making acoustic sensing feasi-
ble with these devices. Numerous studies have employed
acoustic sensing to achieve tracking and localization.

Earphonetrack [27] incorporates earphones into the
acoustic motion tracking ecosystem. EarSoundtrak [13]

enables finger tracking using a speaker ring and multiple
microphones. The user wears a ring equipped with a
speaker that emits acoustic signals at a specific frequency.
A receiver with several microphones positioned at various
locations captures the signals and analyzes the phase infor-
mation. The speaker’s location is determined based on the
phase. FingerIO [28] is another study that achieves finger
tracking by transforming the speaker and microphone into
an active sonar system. The speaker emits a specially
designed Orthogonal Frequency Division Multiplexing
(OFDM) signal, and the microphone captures the echo
produced by the human finger. By analyzing the reflected
OFDM signal, 2D finger tracking is accomplished. LLAP
[15] facilitates gesture tracking through phase-based dis-
tance measurement, utilizing acoustic phase to determine
movement direction and distance. For 1D and 2D tracking,
LLAP achieves tracking accuracies of 3.5 mm and 4.6 mm,
respectively. CAT [11] employs multiple speakers and a
single microphone to enable device tracking. The speakers
emit inaudible sounds at varying frequencies, which a
device equipped with a microphone, such as a smartphone,
receives to ascertain device movement direction and speed.
CAT also incorporates an IMU to enhance performance,
achieving a median error of 8 mm. Ge et al. [14] propose a
novel approach to acoustic motion tracking. Their system
comprises two speakers and one microphone. The speakers
emit two sine waves at distinct frequencies, creating a pe-
riodically changing sound field. A microphone within the
sound field detects these changes, enabling angle tracking.
Combined with phase-based distance tracking, this system
successfully accomplishes motion tracking. Yang et al. [29]
achieve head orientation estimation using two microphone
arrays. As individuals speak, the sound is captured by
the microphone arrays, and the energy radiation pattern
is utilized to determine head orientation. Most current
acoustic sensing research focuses on single point tracking;
however, this approach is insufficient for extracting head
orientation. By considering two microphones together in
the context of acoustic tracking, we aim to reconstruct
both head movement and orientation. FaceOri [30] pro-
poses a head orientation estimation system that measures
the distance between earphone microphones and laptop
speakers. Nevertheless, this method necessitates synchro-
nization between the transmitter and receiver, making it
challenging to operate on multiple devices simultaneously.



12

VII. Conclusion

We design and implement EHTrack, a novel head track-
ing system based solely on acoustic signals. By deriving the
movement of the earphones, we can achieve accurate, user-
friendly, widely applicable head tracking on COST devices.
Our system leverages strength-based angle tracking and
phase-based distance tracking methods to obtain the
movement of each earphone, and then derive a model
to get accurate head movement and orientation. Our
evaluation results show that EHTrack achieves an average
tracking error of 2.98 cm and an orientation tracking
error of 1.83◦. In an exhibition scenario, we achieved
an attention estimation accuracy of 89.2%. EHTrack
improves the availability of head tracking, enabling its use
in a wider range scenarios. We believe that EHTrack has
the potential to enable new heading-based applications in
daily scenarios.
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