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Abstract—Face authentication systems have gained widespread
popularity because of their user-friendly usage and increasing
recognition accuracy. Unfortunately, the boom in mobile social
networks has bought with it media-based facial forgery; a
critical threat where an adversary forges or replays the victim’s
photo/video to fool the system. In this paper, we propose
EchoFace, an effective and robust liveness detection system to
enhance face authentication in defending against media-based
attacks, which works with today’s smartphones/smartwatches
without any hardware modification. EchoFace uses active acous-
tic sensing to differentiate the uneven stereostructure of the
face and the flat forged media. Our proposed scheme effectively
extracts the desired reflection profiles from the target. Moreover,
we propose effective similarity measurements of reflection profiles
to distinguish live users from forged media, which works robustly
under various environmental conditions. EchoFace only requires
low-cost and universally equipped acoustic sensors without hu-
man intervention for liveness detection, which can be easily
deployed in a variety of application scenarios. We implement
EchoFace on commercial smartphones, and experiment results
show that EchoFace achieves an average detection accuracy
higher than 96% and false alarm rate lower than 4% across
various media attacks and different levels of background noise.
This shows its great potential to enhance the security of widely-
deployed face authentication systems in real scenarios.

Index Terms—Acoustic sensing, Liveness detection, Face au-
thentication, Media attack detection.

I. INTRODUCTION

In recent years, biometric authentication has attracted con-
siderable attention for its natural advantages over tradi-
tional credential-based authentication. Among various biomet-
ric methods, facial authentication has been widely adopted due
to the user-friendly usage and increasing recognition accuracy.
Nowadays, facial authentication systems are not only in mobile
devices like iPhones, various Android smartphones, but also in
wearables [1] and many other IoT devices in retail stores [2],
hotels [3] and airports [4], [5].

However, some existing face authentication systems (True
Key [6], FaceLock Pro [7] and Visidon [8]) are proved to
be vulnerable against the vicious media attacks, where an
adversary forges or replays the victim’s photo/video to fool the
system. Prior study [9] has shown that 53% of facial photos
from the social media, such as Facebook and Google+, can
easily be utilized to spoof face authentication systems, which
raises great public concern for the security of these systems
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and calls for a universal solution to deal with the threat of
these media attacks.

Despite extensive efforts in proposing various liveness de-
tection methods to defend media attacks, there is still space for
improving security levels, and the universality and robustness
of liveness detection systems. Video-based liveness detection
systems [10]–[12] rely on video or multiple image inputs
and assume that images used in media forgery attacks move
differently to a live face. Thus, they are vulnerable to the
well-executed video forgery attacks. True Key [6] simply
integrated another biometric, fingerprint to detect the live
users. Unfortunately, the fingerprint biometric can also be
forged [13]. FaceLive [14] and Chen et al. [15] both require a
user to hold and move a mobile device over a short distance in
front of her/his face for liveness verification. Obviously, such
user-involved methods can not be applied to many face authen-
tication systems in retail stores [2], hotels [3] or airports [4],
[5], since it is impossible for the user to move bulky machines.
FaceHeart [16] requires relatively good ambient illumination
to extract subtle photoplethysmograms from the face videos
for liveness detection, thus their performance may be affected
in a relatively dim environment. Apple’s FaceID achieves good
performance at the extra cost of additional hardware (e.g.,
dot projector, flood illuminator and infrared camera), which
may not be available in most low-end devices. In contrast,
EchoFace aims to provide a solution suitable for a wide range
of existing low-end IoT/wearables and smartphones.

It is observed that spatial structures are the biggest differ-
ence between the live user’s face and her/his photo/video.
As shown in Fig. 1, the live user’s face is an uneven
stereostructure, including complex curved surfaces, while the
photo/video should be a flat plane. Thus, to defend media
forgery attacks, the devices equipped with a speaker and two
microphones could use active acoustic sensing to detect such
spatial structures. Based on the above observation, we propose
EchoFace, an acoustic-based liveness detection system to
help face authentication defend itself from the media forgery
attacks. EchoFace turns the devices equipped with speakers
and microphones into an active sonar to detect the spatial
structures of the target. In our system, the speaker emits well-
designed signals, and two microphones with a little space
separation collect reflection signals in the meantime.

Our system achieves the desired properties as follows:
1) Effectiveness: the system can effectively distinguish the
live user and forged media (photos and videos). The uneven
stereostructure of face results in quite different multipath
effects on the signals reflected to two microphones, while the
flat photo/video induces similar reflection effects. Therefore,
EchoFace could distinguish between live users and the forged
media by analyzing the similarity between reflected signals at
two microphones. 2) Passiveness: our approach requires no ex-
plicit user involvement, which makes the solution universally
suitable to enhance face authentication on both mobile devices
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Fig. 1: Working principle of EchoFace.

Fig. 2: EchoFace Overview.

and stationary machines [2]–[5], considering speakers and mi-
crophones are not only commonly equipped on mobile devices
but also gradually adopted on many machines to provide voice
interaction to the users. 3) Robustness: the system performance
is insensitive to different environmental factors. EchoFace
would not be affected by ambient illumination, and would
also be resistant to ambient noise by well-designed emitted
signals. Compared with the most recent effort [17] which
mainly utilizes a trained Convolutional Neural Network(CNN)
to extract reliable acoustic features, EchoFace requires no
training process. Thus, the liveness detection function provided
by EchoFace can work in a plug-and-play manner to enhance
any existing face authentication method.

However, there exists two main challenges to achieve the
above acoustic-based liveness detection system. Firstly, most
off-the-shelf speakers and microphones are omni-directional.
Thus, acoustic signals received by the microphones include
not only desired reflection from the detection targets (the live
user or the impostor), but also direct transmission from the
nearby speaker and background reflection from other objects.
Besides, the magnitude of direct transmission is generally two
to three orders larger than that of target reflection. Secondly,
EchoFace requires effective similarity measurements to work
robustly under various unknown settings, including different
target-device distances, hardware imperfection and ambient
noise level. To deal with the above challenges, we develop a
distance estimation scheme to extract the desired target reflec-
tion, which effectively eliminates the interference from direct
transmission and background reflection. Then, we leverage two
microphones with a little separation to collect the reflection
signals. Since the two microphones work simultaneously and
the target is closer to the device than other acoustic sources,
the similarity characteristics between signals collected from
two microphones are relatively stable under different settings.

Our main contributions are summarized as follows: (i)
We propose EchoFace, an acoustic-based liveness detection
system to help face authentication effectively defend the
media(photo/video) forgery attacks, which only requires com-
monly available acoustic sensors without explicit user involve-
ment. (ii) We propose a distance estimation scheme to collect
the desired reflection profile from the target without inter-
ference from the speaker and background objects. Moreover,
we propose effective similarity measurements of reflection
profiles to distinguish live users and the forged media, which
achieves good performance on liveness detection under various
environmental conditions. (iii) We implement EchoFace on the
commercial smartphones and conduct extensive experiments
to evaluate its performance on liveness detection. Experiment
results show that EchoFace achieves 96% average detection
accuracy and 3.57% false alarm rate, which shows the potential
of EchoFace to enhance the security of widely-deployed face

authentication systems on mobile devices and in other real life
scenarios [2]–[5].

II. SYSTEM OVERVIEW

This section first illustrates how EchoFace leverages active
acoustic sensing to differentiate a live user and the forged
media (photo/video), then introduces the threat model, and
then finally gives an overview of the EchoFace system.

A. EchoFace’s Working Principle
EchoFace turns devices equipped with one speaker and two

microphones into an active sonar to detect the spatial structures
of the target. The speaker emits the well-designed signals, and
meanwhile the two microphones collect reflection signals. As
shown in Fig. 1, supposing the emitted signal is x(t) and two
reflected signals from the target surface arrive at a microphone
with time delay τ1 and τ2 respectively, the received signal can
be represented as y(t) = Ax(t− τ1) +Ax(t− τ2), where A is
the amplitude of the reflected signal. Considering the target is
quite close to the device, the amplitude distortions from two
transmission paths are regarded as the same. Thus, the Fourier
amplitude spectrum of y(t) can be expressed as follows:

Y (f) = Ae−j2πfτ1X(f) +Ae−j2πfτ2X(f)

= 2Ae−j2πf(τ1+τ2) cosπf(τ1 − τ2)X(f), (1)

where X(f) is the Fourier amplitude spectrum of x(t).
This equation makes it clear that the received signals have

uneven attenuation at different frequencies when the emitted
signal has a flat amplitude spectrum. The reason is that
different reflections with delayed phases may be constructive
at some frequencies while destructive at other frequencies.

We regard the above Fourier amplitude spectrum of reflected
signals as the multipath profile. Since two microphones are
located at different places, they may obtain different multipath
profiles if their reflected signals go through different reflection
multipaths. The typical wavelengths of acoustic signals are
around 2-3 centimeters. Thus, when the sensing target is a
live user’s face, the uneven stereostructure of face results in
quite different multipath effects on the reflected signals to two
microphones. However, for the flat forged photo/video, the
reflected signals go through similar multipaths before arriving
at the two microphones, thus, their multipath profiles will show
more similarity. Even a printed photo can be bent to simulate
a facial structure, it is very difficult to simulate the detailed
fluctuation of the face without losing essential image infor-
mation. Therefore, EchoFace could distinguish between live
users and forged media by analyzing the similarity between
signals collected from two microphones.

The attack scenarios for our system are defined as follows:
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• Simple Media Attack: The attacker replays a victim’s
photo/video to fool the system.

• Advanced Media Attack: The attacker bends a printed
photo of the victim to simulate the unevenness of the
facial structure.

B. Overview
The system overview of EchoFace is shown in Fig. 2. We

adopt the earpiece speaker instead of the main speaker to
emit the chirp signals. The reasons are two-fold. Firstly, the
earpiece speaker is on the frontal panel and faces the human
face, which facilitates most acoustic signal reflected off the
face for collection and analysis. Secondly, although the main
speaker at the bottom is generally more powerful, its signal
may be serious blocked by users’ hand when the users hold
the phone for liveness detection. Besides, the main speaker
faces the bottom, the signal reflected off the users’ body may
also affect the system performance. The predefined acoustic
signals (elaborated in Section III-A) would be multiplied with
a Hamming window function and then go through a volume
control system to reduce annoyance. Next, the signals are
emitted by the speaker, and in the meantime two microphones
collect reflection signals.

The collected signals include not only the desired reflection
from the detection target but also a direct transmission from
the nearby speaker and background reflection from other
objects. Thus, both reflected signals at two microphones
would be processed in the interference cancellation module to
eliminate two interference described above. In the meantime,
the system will estimate distance between the target and
two microphones. Now we obtain the two multipath profiles
induced by the spatial structure of the target from different
angles of view. Next, the system conducts derivation and
normalization operations on two profiles and applied Dynamic
Time Warping(DTW) to measure their similarity. Finally, the
liveness detection algorithm can distinguish between the live
user and the forged photo/video based on previous similarity
results, and also the estimated distances between the target and
the two microphones.

III. SYSTEM DESIGN

This section elaborates on the detailed design of EchoFace,
including the emitted signal design, the interference can-
cellation, the similarity analysis and the liveness detection
algorithm.

A. Emitted Signal Design
The emitted signal should be carefully designed to satisfy

the properties as follows: 1) Diverse: The emitted signals with
diverse frequency components could facilitate EchoFace to
capture more spatial structural features in the target multipath
profile. 2) Less-annoying: The disturbance to the user would
be limited as much as possible. 3) Robust: The emitted signal
would be resistant to ambient acoustic sources so that the
system performance would remain stable. In the following, we
illustrate our considerations on signal frequency and duration,
signal diversification and annoyance reduction.

1) Signal Frequency and Duration: It is well-known that
most smartphones support a 44.1kHz sampling rate of their
microphones [18], so the highest sensed frequency is 22kHz.
Thus, EchoFace adopts chirp signal sweeping from 12kHz
to 21kHz to sense the target. We discard the frequency

below 12kHz because most background noise from human
activities fall into such range [19]. The acoustic signals from
20kHz to 22kHz are inaudible to avoid annoyance [20].
However, most off-the-shelf speakers/microphones’ frequency
responses above 20kHz on commodity smartphones are very
poor. Some microphones of commodity smartphones even
experience 30dB signal degradation at 22kHz [21]. The reason
is that they are originally built for playing and recording
sounds falling in audible range (far below 20kHz). Therefore,
when the system emits chirp signals from 20kHz-22kHz, on
one side, the emitted signal from the speaker is weak in terms
of energy due to the speaker’s poor frequency response above
20kHz; on the other side, the signal that reflected off the face
and then collected by the microphone is even weaker due to
the microphone’s poor frequency response above 20kHz. This
situation makes it difficult to collect valid face features for
liveness detection. The proposed method adopts chirp signals
from 12kHz to 21kHz to overcome the signal degradation
issue. Besides, as shown in Equation (1) in Section II, the
uneven stereo structure of face results in uneven attenuation
at different frequencies of the received signals. Thus, a wider
bandwidth of the emitted chirps helps the system capture
richer and more accurate face features for liveness detection.
Although the emitted signals of EchoFace are audible, we
apply two effective approaches to reduce the annoyance, which
is illustrated in Section. III-A3.

Besides frequency range, the duration of the chirp signals
requires careful selection since it would affect the signal-to-
noise-ratio (SNR) of the received signals. On the one hand, the
long chirp signal can enable more energy to be collected on
each frequency for more accurate sensing. On the other hand,
a long chirp signal may overlap with the reflections from the
nearby target, which affects the system performance. In daily
usage of facial authentication, the users generally keep their
faces at around 25cm to 40cm away from the camera without
any blockage so that the camera could capture sufficient and
valid facial features. Based on the above analysis, we choose
50-sample emitted signals for sensing, and collect only 50
samples of the received signals within the target range(as
shown in Fig. 3) to eliminate the interference from outside
the target range.

2) Signal Diversification: As mentioned before, the emitted
signals with a diverse frequency component could help facili-
tate EchoFace in capturing more spatially structural features in
the target multipath profile. To further enhance the features in
multipath profiles, we adopts two strategies, signal repetition
and piecewise frequency sweeping.

Signal Repetition: Echoface emits 16 chirp signals con-
secutively to sense the targets, where the duration of each
50-sample chirp signal is 50/44.1kHz ∼= 0.0011 second.
Here, it is important to select the time interval between two
chirps, which is related to both the sensing speed and the
detection accuracy of EchoFace. On the one hand, the larger
the time interval, the longer the time EchoFace needs for target
sensing. On the other hand, an excessively short waiting time
may affect sensing results, since the received signals might
include the remote reflections of the previously emitted chirp.
For example, if EchoFace senses a target 30cm away from a
device using two chirp signal with a 50-sample interval, the
reflection signal from objects at a distance of about 68cm1 will
be added as noise to the received target reflection profiles of
the next chirp. Based on the above analysis, the time interval

1The sampling rate of EchoFace is 44.1kHz and sound travels at a speed
of 338m/s in air, so we have (50+50)/44100×338/2×100+30 ∼= 68cm
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between two chirps in EchoFace is set to 3000 samples as
in [22]. Thus, the total duration of sensing time is equal to
16× (50 + 3000)/44100 ∼= 1.12 second.

Piecewise Frequency Sweeping: Inspired by [22], we divide
all sixteen chirp signals into four groups, each of which
contains four 50-sample signals. Four groups will sweep at
the piecewise frequency range of 12-15kHz, 14-17kHz, 16-
19kHz and 18-21kHz respectively. Compared with one 50-
sample segment sweeping the entire 12–21kHz, the piecewise
frequency sweeping keeps enough energy at each frequency,
which would facilitate EchoFace to capture reliable spatial
structural features in the target multipath profile. A 250-sample
pilot is added before the frequency sweep for synchronization
between speakers and microphones, since the operating system
delays are not consistent in commodity phones. We adopt
a similar synchronization process as in [23] and 11.025kHz
pilot tone as in [22]. Besides that, another 8000 samples
follow the pilot before the chirp signals are played. Different
to [22], four chirps with an incremental frequency range
are played consecutively before the next frequency sweeping,
which increases the independence between two neighboring
chirps to help capture more spatial structural features in the
target multipath profile.

3) Annoyance Reduction: As mentioned before, the distur-
bance of the emitted signals to the user should be limited as
much as possible. EchoFace adopts two strategies to minimize
the annoyance of audible components in the emitted signals.

Multiplying Hamming Window: To effectively lower an-
noyance, EchoFace adds the Hamming window function on
the emitted signals. Abrupt cutoff in the rectangular window
function broadens the frequency spectrum of emitted signal
and produces more audible components. The side lobe of the
Hamming window function degrades more than the rectangular
window function, which avoids such a truncation effect. Thus,
we choose the Hamming window instead of a rectangular
window on the emitted signal. Our experiments shows that the
volunteers feel the sound strength is obviously lower after we
apply the Hamming window function to the emitted signals.

Volume Control: To further reduce annoyance, we adjust
the sound volume without degrading the detection accuracy.
In our preliminary experiments, when the volume of emitted
signal is full (i.e., 100%), the detection accuracy is instead
reduced because the received signals are saturated by the direct
transmission (i.e., the sound emitted directly from the speaker).
Moreover, emitting sound at full volume makes the sensing
process more annoying to the users. When the volume is only
6%, the reflections are too weak to be picked up by two
microphones. Through experiment, we found that it is optimal
to set the speaker volume at 13% for Galaxy C7. Although
the optimal volume setting varies among different devices, it
only requires a one-time calibration to figure out the optimal
volume. Given only 0.018 second (50/44100*16) occupied
by the emitted chirps and above two methods applied, the
volunteers hardly notice the emitted sound in a laboratory.

B. Interference Cancellation
After the speaker emits the designed signals, two micro-

phones harvest the reflection signals, which includes multi-
ple reflections from the desired targets and the surrounding
objects. EchoFace needs to eliminate the interferences to
extract the targeted reflection signals. There are two types of
interference: (i) direct transmission from the nearby speaker,
and (ii) background reflection from other objects. The mag-
nitude of the direct transmission is 2-3 orders larger than

that of the target reflection. Moreover, these interferences
overlap with the target reflection in time when the difference
between their propagation delay is smaller than the chirp
duration (e.g., about 1.1ms in EchoFace). To minimize the
impact of the interference, EchoFace adopts an interference
cancellation scheme, which utilizes the property of emitted
chirp (frequency sweeping) signals to produce the reflection
profile(as shown in Fig. 3) and eliminates the interference from
outside the target range.

Firstly, we accomplish the time synchronization between
speaker and microphones by multiplying the received signals
with the pilot. Then we pass the received signals to a matched
filter to estimate the propagation delay of the target reflection.

Fig. 3: An example of reflection profile.
The unit impulse response of the matched filter is as follows.

h[n] =

{
s[n], if n = 1,2,...,Ns
0, if n is other

, (2)

where s[n] is the emitted signal and Ns is length of the emitted
signal. if the received signal is r[n], then the signal after match
filtering r′[n] can be written as (n = 1, 2, ..., Nr):

r′[n] =

Ns∑
i=1

h[i]r[n+ i− 1], n = 1, 2, ...Nr (3)

where Nr is the length of the received signals/Nr ≥ Ns).
As shown in Fig. 3, the first and largest peak represents

the direct transmission. After obtaining the propagation delay
of direct path, we can subtract the interference of direct
transmission to obtain r̂[n], n = 1, 2, ...Nr.

Then, we pass the residual received signals by an adaptive
matched filter, and figure out the propagation delay of the
target reflection indicated by the second peak in Fig. 3. The
detailed algorithm is illustrated in Algorithm 1. Once we
obtain the propagation delay of the target reflection, we can
extract the reflection profiles as shown in Fig. 3 only with the
reflection from the target range, without direct transmission
and background interference. We denote the reflection profiles
of the main microphone as Pα and denote those of the vice
microphone as Pβ for the following similarity analysis.

C. Similarity Analysis of Multipath Profiles
With two multipath profiles Pα and Pβ , EchoFace estimates

their similarity to distinguish the live user face and forged
media for liveness detection as explained in Section II.

The intuitive method is to adopt the simple correlation
expressed as follows.

r(Pα, Pβ) =

∑
k(Pα(k)− P̄α)(Pβ(k)− P̄β)√∑

k(Pα(k)− P̄α)2
√∑

k(Pβ(k)− P̄β)2

(4)
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Algorithm 1 Adaptive Propagation Delay Estimation

Input:
The residual received signals from two microphones:
{r̂m1
i [n], i = 1, 2, ..., 16} and {r̂m2

i [n], i = 1, 2, ..., 16}.
Output:

The estimated propagation delay of reflection signals from
the target τm1 and τm2 .

1: Initialization: idxl ← 40, idxr ← 110, idxthres ← 15
reference standard deviation ∆← MAXINT, λ← 1

2
2: for pt← idxl to idxr − 50 do
3: for i← 1 to 16 do
4: Feed r̂m1

i [pt : pt + 50] and r̂m2
i [pt : pt + 50] to the

matched filter h[n], and figure out the sample index
of the first and largest peak: Im1

i and Im2
i

5: end for
6: Compute the mean of Im1

i and Im2
i (i = 1, 2, ..., 16) as

µm1

I , µm2

I
7: if λδm1

I +(1−λ)δm2

I < ∆ and |µm1

I − µ
m2

I | < idxthres
then

8: ∆← λδm1

I + (1− λ)δm2

I
9: τm1 ← µm1

I
10: τm2

← µm2

I
11: end if
12: end for

where r(Pα, Pβ) is the correlation coefficient, P̄α =
1
N

∑N
k=1 Pα(k) and P̄β = 1

N

∑N
k=1 Pβ(k), k = 1, 2, ..., 50.

However, there exists an inevitable error in the propagation
delay estimation, which causes the shift in frequency features
for chirp signals. The experimental results show that simply
correlating the profiles can only achieve the detection accuracy
as high as 82.3%, which cannot satisfy the requirement of real-
life scenarios.

Then we try to utilize Dynamic Time Warping (DTW) [24]
to characterize the overall similarity of two profiles, which
are widely used in speech recognition to deal with the word
matching problem under various speech speeds [25]. Similarity
analysis of multipath profiles in EchoFace has a similar nature
to speech pattern matching. Given two sequences, and a cost
matrix, DTW searches for an alignment that maps each point
in the first sequence to one or more points in the second
sequence, such that the mapping cost summed over all point
pairs is minimized. In the context of EchoFace, we have
two multipath profiles Pα and Pβ harvested by the main
microphone and the vice microphone respectively. For any pair
of points in the two profiles, Pα(i) and Pβ(j), we define the
cost of mapping these two points to each other as the Euclidean
distance between the two power values:

C(i, j) = |Pα(i)− Pβ(j)| . (5)

For such an input, DTW looks for the best alignment of
the two profiles that minimizes the total cost, using standard
dynamic programming [24]. In EchoFace, the two multipath
profiles are of the same length N . We refer to the candi-
date alignment set as {M = m1,m2, ...,ml, ...,mL}, where
ml = (il, jl) indicates the mapping of point il in sequence Pα
with point jl in sequence Pβ . What is more, these candidate
alignments need to satisfy the following requirements:

(i) il ∈ [1, N ] and jl ∈ [1, N ];
(ii) m1 = (1, 1), mL = (N,N), and N ≤ L;
(iii) ∀l ∈ [1, L− 1], il+1 ≥ il, jl+1 ≥ jl;
(iv) ∀l ∈ [1, L], |il − jl| < N .

We refer to the minimum total cost associated with the best
alignment as the distance between two profiles, D(Pα, Pβ),
then

D(Pα, Pβ) = min
M

L∑
l=1

C(il, jl), (6)

where C(il, jl) refers to the mapping cost between point
Pα(il) and point Pβ(jl). EchoFace leverages the distance
between two multipath profiles to represent the similarity of
them. The value of distance and the similarity are in inverse
proportion, i.e., a larger distance indicates a smaller similarity
and vice versa.

Microphone Hardware Difference: A practical challenge
arises when we directly apply the above DTW algorithm to
compare the multipath profiles: scaling of feature values (e.g.,
peak heights, valley depths in the multipath profiles). Feature
values obtained by the main microphone are 2-5 times larger
than that of the vice microphone due to the differences in
microphone hardware. It is common that the sensitivity of
microphones on the same device differ significantly with each
other. The intuitive method to eliminate the effect of such a
variation is to normalize each microphone’s multipath profile
by its maximum value. However, normalization alone is not
enough. Note the multipath profiles are generally sensitive
to the relative distance and orientation between the target
and device, which cases peaks and valleys to be scaled
differently across different multipath profiles, independent of
the microphones’ hardware.

To address these potential variations in feature values, we
leverage a variant of DTW [26]. Instead of performing DTW
directly on the two multipath profiles Pα and Pβ , EchoFace
firstly computes their derivatives: P ′α and P ′β . Next, each
derivative sequence is normalized by its standard deviation.
Then EchoFace applies the DTW algorithm to align the two
normalized derivative sequences. The cost of this alignment is
recorded as the distance between the two multipath profiles.
It has been shown in [26] that such a design allows DTW to
focus on the high level features of ”shape”, rather than being
bogged down by the absolute values of the sequences, which
meets the needs of EchoFace. Our preliminary experiments
demonstrate that derivative DTW provides a robust metric to
evaluate the similarity between multipath profiles collected by
two microphones.

D. Liveness Detection Algorithm
In EchoFace, the speaker emits 16 chirp signals, covering

the frequency ranges of 12-15kHz, 14-17kHz, 16-19kHz, and
18-21kHz respectively. After reflection signals are collected
by the two microphones, EchoFace firstly applies the target
reflection extraction algorithm described in III-B to obtain
16 target reflection signals from each microphone. The ex-
tracted 16 pairs of target reflection profiles are expressed as(
Pm1
i [n], Pm2

i [n]
)
, i = 1, 2, ..., 16, where the superscript m1

and m2 indicate that the signals are harvested by the main
microphone and the vice microphone respectively. Then, we
process the extracted signal pairs with the derivative DTW,
and figure out the distance between Pm1

i [n] and Pm2
i [n] as

D(Pm1
i , Pm2

i ), i = 1, 2, ..., 16. Next, we develop a live-
ness detection algorithm to distinguish forged media from a
live user’s face, which takes the estimated profile distances
D(Pm1

i , Pm2
i ), i = 1, 2, ..., 16 and the estimated distances

between the target and the two microphones dm1
, dm2

as
inputs. (dm1

= τm1
× c, dm2

= τm2
× c, c = 340m/s). The
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liveness detection algorithm basically utilizes profile distances
to distinguish forged media from a live user’s face. When most
of the distances of profile pairs are larger than the empirical
thresholds, the system regards the target as a live user’s face;
otherwise, the target is regarded as a forged media. Here,
we adopted adaptive thresholds T fd based on the estimated
distances between the target and the two microphones and
also the frequency range of emitted signals.

IV. IMPLEMENTATION AND EVALUATION

We implement the EchoFace on commercial smartphones
and conduct extensive experiments to evaluate the system
performance. In this section, we first introduce the imple-
mentation and our experimental setting. Then, we evaluate
the performance of EchoFace under different conditions to
validate the effectiveness and robustness of our system.

A. System Implementation and Experimental setting

The acoustic signal emission and reflection collection is im-
plemented on a Sumsang Galaxy C7(Android 7.0). Collected
signal analysis including interference cancellation, adaptive
propagation delay estimation (Algorithm 1) and liveness de-
tection (Algorithm ??) are implemented in MATLAB R2015a.
We conduct our experiments in the laboratory setting.

It is worth mentioning that the goal of proposed method is to
enhance the existing face authentication methods with liveness
detection capability. Face authentication itself requires the user
to hold the phone at the position where the front camera can
capture valid face features. Thus, the ranges from cameras
should be neither too close (partial captured face) nor too far
(small or blurry captured face). To satisfy this requirement, the
volunteers were asked to take some selfies before the system
evaluation. The sefies are required to contain whole face fea-
tures to pass photo-based face authentication. It is found that
even though different volunteers have different arm lengths,
the smartphone-to-face distances generally fall into the range
of 23cm-41cm to capture their faces for authentication. Thus,
we conduct evaluation within this range to validate the system
performance.

In the following evaluation, there are two settings for data
collection: 1) the volunteer holds the smartphone with different
smartphone-to-face distances for evaluation; 2) the smartphone
is set up on a office table for evaluation. The second one is
the particular setting for evaluating system performance across
various smartphone-to-face distances, where the distances can
be controlled and measured precisely between different vol-
unteers’ trials for comparison.

In the normal usage mode, a volunteer’s face will be in
front of the smartphone. In the media attack mode, a victims’s
photo (flat or bent) will be in front of the smartphone. When
we collect the experiment data, other people in the room
are free to do daily activities including talking and walking
around. Some people pass by frequently since the table is
located near the door. Moreover, there exists environmental
noise including the noise of the air-conditioner and keystrokes.
We recruit six volunteers(1 female and 5 males) and amass
about 540 trials collected at different periods of time (9:00-
12:00am, 14:00-17:00pm, and 19:00-22:00pm). This is done
over three days to evaluate EchoFace’s performance under
different conditions, which includes different smartphone-to-
face distances, different threat models, and different ambient
noise levels.

We mainly use two metrics to demonstrate the performance
of the liveness detection: detection accuracy and false alarm
rate. TP (true positive) denotes the system correctly regards a
live user as a live user. TN (true negative) denotes the system
correctly regards a forged photo as a forged photo. FP (false
positive) denotes the system wrongly regards a forged photo
as a live user. FN (false negative) denotes the system wrongly
regards a live user as a forged photo. Detection accuracy
is calculated as TP+TN

TP+TN+FP+FN , and false alarm rate is
calculated as FP

FP+TN . A good liveness detection system is
expected to have a high detection accuracy and a low false
alarm rate.

B. Performance across Various Distances
As analyzed before, the collected multipath profiles are sig-

nificantly affected by the distance between the user’s face and
the smartphone. To validate the effectiveness of our method
on handling the distance factor, we conduct the following
experiment to show the performance of our system under
different smartphone-to-face distances. We collect the reflected
signals when the volunteers’ faces are 23cm-41cm away from
the smartphone. At each location, we also collect the reflected
signal of the volunteers’s photos. We put the reflected signals
of all volunteers’ faces and their photos at the same distance
into one group. Within each distance group, we calculate the
TP, TN, FP, FN to derive detection accuracy and false alarm
rate. As shown in Fig. 4, EchoFace can achieve a stable
performance regardless of smartphone-to-face distances. The
average accuracy is 96.02%, and the average false alarm rate
is 3.97%. Since the face authentication requires an appropriate
distance (typically from 25cm to 40cm) between the target face
and the smartphone to capture valid image information, the
above evaluation results shows the proposed liveness detection
system has an adequate effective working range to co-work
with face authentication in real scenarios.

C. Performance across Various Users
The stereostructure of the face varies across different people.

To validate the effectiveness of our system on different users,
we conduct the following experiment to show the detection
accuracy of our system under different users. We collected
the reflected signals from six volunteers. The volunteers were
asked to hold the smartphone at slightly different distances
(29cm, 32cm and 35cm; 20 trials of each distance) from their
faces. The distances may not be very precise due to the small
tremble of their hands. And at each location, we also collect
the reflected signal of the volunteers’s photos. We put the
reflected signals of one specific volunteer’ faces and his/her
photos at different distances into one group. Within the group
of each volunteer, we calculate the TP, TN, FP, FN to derive
detection accuracy and false alarm rate. As shown in Fig. 5, the
system achieves a stable performance regardless of the variety
of users’ face and small tremble of users’ hand. The average
detection accuracy is 96.2%, and the average false alarm rate
is 3.57%.

D. Performance under Advanced Media Attack
In the previous experiment, the system can distinguish the

2D media from the face of a live user, relying on the fact that
the live user’s face has more a complex stereostructure while
the 2D media only has a flat surface. In this experiment, we
test the system performance under a more advanced attack, i.e.,
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Fig. 6: Noise Resistance Experiments
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(b) Performance across different bending degrees.

Fig. 7: Performance under Advanced Media Attack.

we try to use the bent photos to fool the system. We bent the
printed photo by attaching it to the curved surface of a plastic
box. As shown in Fig. 7(a), the curvature can be described
by the height h. We set the height at 1cm, 2cm and 3cm to
imitate different bending degrees of the printed photo. The
experiment setting is the same as previous experiments except
we collect the reflected signal of the volunteers’s bent photo
for evaluation instead of flat photos. The results in Fig. 7(b)
shows that EchoFace achieves a satisfying performance when
the printed photo is slightly bent. The average detection
accuracy is 96.5%, and the average false alarm rate is 3.5%.
We did not test the cases with higher h because when the photo
is over-bent, the facial features on the photo are too distorted to
pass the original face authentication, where liveness detection
may not be required. Due to the same reason, it is meaningless
to try to fool the detection system with other objects like a
cup or a toy doll because they do not have the correct facial
features to pass the original face authentication.

E. Noise Resistance
In this experiment, we validate the noise resistance capabil-

ity of the system. In real-life scenarios, EchoFace is supposed
to work well in the presence of noise from TV, people chatting,
and air conditioning fans. To test the robustness against noises,
we collect reflection signals in a laboratory environment when
another smartphone is placed 30cm away on the same surface.
That phone is set to either replay a clip of BBC news or a song
(“Because of you-Kelly Clarkson”) at different volumes (50%
and 100%). As shown in Fig. 6, EchoFace can work well
under wide background noise levels including chatting and
music even at a 100% volume. Relying on carefully-designed
emitted signals and active acoustic sensing, EchoFace is robust
to most background noises in real scenarios.

V. RELATED WORKS

Researchers have proposed various liveness detection meth-
ods to help face authentication defend against media attacks.
Early works focused on different features between replayed

photos/videos and live users. Li et al. [10] exploited the
dynamic characteristics of captured videos for liveness de-
tection. Tan et al. [11] applied the Lambertian model to
extract different surface properties of a live human face or a
photograph, while Bao et al. [12] leveraged the differences in
optical flow fields generated by movements of two dimensional
planes and three dimensional objects. These liveness detection
systems [10]–[12], [27] rely on video input or multiple images
and assume that playback attacks will have different motions
to that of a live face. Thus, they are still vulnerable to well-
executed video playback attacks. Therefore, the researchers
attempted to integrate additional sensors to achieve more
secure liveness detection. True Key [6] simply integrated
another biometric, fingerprints to detect live users. However,
it impairs the convenience of face authentication, and the
fingerprint biometric can also be forged [13]. FaceLive [14]
and Chen et al. [15] both leveraged the correlation between
readings of inertial sensors and facial videos from front-facing
camera to achieve liveness detection. To perform the liveness
verification in their system, a user needs to hold and move a
mobile device over a short distance in front of his/her face.
These user-involved methods can not be applied to many face
authentication machines in retail stores [2], hotels [3] and
airports [4], [5], since it is impossible for the user to move the
bulky machines. FaceHeart [16] achieved liveness detection
by comparing the two photoplethysmograms independently
extracted from the face videos taken with the front camera and
fingertip videos taken with the rear camera on smartphones,
which requires relatively good ambient illumination to extract
subtle photoplethysmograms from face videos. Apple’s FaceID
achieves a good performance at the extra cost of additional
hardware (e.g., dot projector, flood illuminator and infrared
camera), which may not be available in most low-end devices.
Komeili et al. [28] fused ECG and fingerprint for liveness
detection, which also requires specialized hardware. By con-
trast, EchoFace aims to provide a solution suitable for a wide
range of existing low-end IoT/wearables and smartphones.
Active acoustic sensing is an active research field [29]–[31],
and the previous works [32], [33] have utilized it to enhance
voice authentication. In this paper, EchoFace leverages active
acoustic sensing to help face authentication defend against
media forgery attacks.

VI. CONCLUSION

This paper proposes EchoFace, an effective and robust
liveness detection system to enhance face authentication in
defending against media-based attacks. EchoFace uses active
acoustic sensing to differentiate the uneven stereostructure of
the face and the flat forged media. EchoFace only requires the
low-cost and universally equipped acoustic sensors, without
explicit user involvement for liveness detection, which can be
easily deployed in a variety of application scenarios. Experi-
ment results show that EchoFace achieves an average accuracy
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higher than 96% and false alarm rate lower than 4% across
various media attacks and different levels of background noise.
This shows its great potential for enhancing the security of
widely-deployed face authentication systems in real scenarios.
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