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Abstract—The massive MIMO gain for wireless communi-
cation has been greatly hindered by the feedback overhead
of channel state information (CSI) growing linearly with the
number of antennas. Recent efforts leverage the DNN-based
encoder-decoder framework to exploit correlations within the
CSI matrix for better CSI compression. However, existing works
have not fully exploited the unique features of CSI, resulting
in an unsatisfactory performance under high compression ratios
and sensitivity to multipath effects. Instead of treating CSI as
common 2D matrices like images, we reveal the intrinsic stripe-
based correlation across the CSI matrix. Driven by this insight,
we propose CSI-StripeFormer, a stripe-aware encoder-decoder
framework to exploit the unique stripe feature for better CSI
compression. We design a lightweight encoder with asymmetric
convolution kernels to capture various shape features. We further
incorporate novel designs tailored for stripe features, including
a novel hierarchical Transformer backbone in the decoder and
a hybrid attention mechanism to extract and fuse correlations
in angular and delay domains. Our evaluation results show that
our system achieves an over 7dB channel reconstruction gain
under a high compression ratio of 64 in multipath-rich scenarios,
significantly superior to current state-of-the-art approaches. This
gain can be further improved to 17dB given the extended
embedded dimension of our backbone.

I. INTRODUCTION

Massive multiple-input multiple-output (mMIMO) technol-
ogy exploits spatial diversity gain brought about by mas-
sive antennas at the base station (BS) to greatly improve
spectral efficiency. However, the mMIMO gain for wireless
communication systems can be severely compromised by the
bandwidth overhead of feeding back downlink (DL) channel
state information (CSI) measured by user equipment (UE).
The number of DL CSI parameters grows proportionally to
the increase in antennas of BS. Furthermore, as most cellular
systems operate in frequency-division duplexing (FDD) mode,
i.e., uplink (UL) and DL occur at different frequency bands
concurrently, it is hard to eliminate this overhead simply based
on channel reciprocity, i.e., DL and UL CSI are equivalent.

To address this issue, people seek to compress the huge DL
CSI feedback on UE side and reconstruct the original DL CSI
matrix on BS side. Recently, many deep neural network (DNN)
powered approaches [1–6] have made notable progress on the
CSI compression task. They leverage the DNN-based encoder-
decoder framework to exploit the correlation within the DL
CSI matrix in an end-to-end manner. Thus, they implicitly
relax the strict sparsity assumption and have empirically
achieved better channel reconstruction performance than the

compressed-sensing-based counterparts [1].
However, there is still much room for improvement towards

practical CSI compression for mMIMO. Firstly, existing deep
CSI compression systems experience a dramatic increase in
channel reconstruction error with a higher compression ratio
(CR), as summarized in Fig. 1. Unfortunately, the high CR
cases are more critical for the practical scenarios owing to
the limited time budget for CSI feedback constrained by the
channel coherence time, i.e., the interval during which the
channel does not change much. It is significant to improve the
performance under high CR for better scalability in the prac-
tical FDD mMIMO systems. Secondly, existing systems, e.g.,
CSINet [1], CRNet [6], SRNet [3] and so on, have unbalanced
performances across various scenarios, i.e., consistently much
worse on the outdoor dataset than the indoor one generated
from the recognized channel model COST2100 [7] shown in
Fig. 1. It is found that the outdoor dataset features much richer
multipaths than the indoor one as shown in Fig. 2. Further
in-depth investigation (Fig. 3) on the existing works across
different scenarios validates that the richness of multipath
effects can significantly influence the model’s performance. It
is important to ensure the channel reconstruction performance
is robust to multipath issues for stable quality of services.

To further advance this field, we argue that it is crucial
to deeply understand the unique features of our compression
target—CSI matrix, rather than simply treat it as an ordinary
2D matrice like image. Therefore, we delve into the underlying
formation mechanism of the CSI matrix. Unlike images with
apparent patch-based locality, the measured CSI matrix in the
practical setting has intrinsic correlations across channel com-
ponents in the same row and column. Through our analysis,
it is found that the windowing effect due to limited antennas
and sub-carriers diffuses the energy of one signal path in both
horizontal and vertical directions of the CSI matrix. Thus, the
CSI matrix presents stripe features as the sample in Fig. 4.

This observation inspires us to design CSI-StripeFormer, a
stripe-aware encoder-decoder framework to enable better CSI
compression. Since the UE is resource-sensitive, we design
a lightweight encoder, adopting the asymmetric convolution
kernels [8] as the key components to well capture various
shaped features. Then, we further incorporate novel designs
tailored for stripe features of the CSI matrix in the decoder
at the BS side. Firstly, the stripe-based correlation requires
the model with global receptive field, i.e., small convolution
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kernels with limited receptive field may not fit. Thus, we
leverage a hierarchical Transformer-based architecture as the
backbone to enable a global receptive field. It includes several
layers, each containing several basic StripeFormer blocks
specialized for the CSI matrix. Secondly, the model is desired
to capture complex stripe-based correlations, where one signal
contributes energy to components across stripes, and compo-
nents in stripes may get superimposed by multiple signals.
Besides, stripes in the angular and delay domains of CSI have
different physical characteristics and a pair of crossed stripes
jointly determine a CSI element. To explicitly incorporate
them into the model, we propose StripeFormer, a Transformer-
based architecture enhanced with a hybrid attention mecha-
nism with both self-attention and cross-attention operations.
The self-attention performs attention on stripes in horizontal
and vertical domains respectively to model the stripe-based
correlations. Meanwhile, the cross-attention dynamically fuses
the representations from both horizontal and vertical attention
to combine the distinct impacts of angular and delay domains.

We conduct extensive experiments on two representative
datasets of indoor and outdoor scenarios generated from the
COST2100 channel model [7]. The evaluation results show
that our model achieves the best performance in both scenarios
with high CRs. Moreover, for the multipath-rich dataset, we
significantly reduce normalized mean squared error (NMSE) at
CR=64 over 7 dB compared with the state-of-the-art (SOTA)
models [3]. This gain can be further improved to 17 dB
by extending the embedded dimension of our backbone. Our
model’s scalability is also validated since our NMSE at CR=64
is even 10 dB smaller than SOTA models at CR=4 in the
multipath-rich scenario. In addition, our model can practically
compress CSI matrix from 64 Kbits to 192 bits, i.e., effective
CR=341 with a low NMSE of -13.65 dB, even with a simple
post-training uniform quantization.

Highlights of our contributions are as follows:
1) We identify the gap towards practical CSI compression:

channel reconstruction performance is degraded under high
CR and not robust to mutlipath issues, and further inves-
tigate the underlying formation mechanism of CSI matrix
to reveal its unique stripe features.

2) We propose CSI-StripeFormer, a stripe-aware encoder-
decoder framework to explicitly and fully exploit the
stripe features. Our model features a novel hierarchi-
cal Transformer-based architecture and a hybrid attention
mechanism to enable better CSI compression.

3) We conduct comprehensive evaluations to verify the ef-
fectiveness of our proposed system. Our proposed system
can reduce the NMSE to -14.89 dB for multipath-rich
scenarios even under high CR=64, much superior to the
SOTA baseline performance of -7.8 dB, i.e., 7 dB gain. This
gain can be further improved to 17 dB given the extended
embedded dimension of our backbone.

II. PRELIMINARIES

In this section, we first introduce our system model and then
elaborate on the physical model of wireless channels.
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Fig. 1: SOTA performance: normalized mean square error (NMSE)
of channel reconstruction for various combinations of compression
ratio (CR) and dataset, i.e., (CR, dataset). A smaller NMSE means
a better reconstruction.

A. System Model
We consider the downlink of an FDD mMIMO system

with Nt ≫ 1 transmitting antennas at the BS and a single
receiving antenna at the UE for brevity. The system adopts
Orthogonal Frequency Division Multiplexing (OFDM) with
Nc subcarriers. Given the transmitted signal x ∈ CNc×1, the
received signal y is presented as:

y = HPx+ z, (1)

where H ∈ CNc×Nt denotes the downlink wireless channel
matrix, i.e., DL CSI; P ∈ CNt×Nc is the precoding matrix
enforced by the BS for beamforming or eliminating user
interference, and z ∈ CNc×1 is the additive noise. It requires
obtaining the DL CSI matrix H to design the corresponding
precoding matrix P to get the mMIMO gain. However, it is
unaffordable to directly feed back H ∈ CNc×Nt . Thus, we fol-
low the previous efforts to exploit the sparsity of the angular-
delay CSI matrix [1]. Specifically, we convert H ∈ CNc×Nt

from the spatial-frequency domain to the angular-delay one by
applying discrete Fourier transform (DFT):

H̃ = FdHFH
a , (2)

where Fd and Fa are DFT matrices, FH
a represents the

conjugate transpose of Fa. Then, we can select the first Na

rows of H̃ as Ha for initial compression, because multipaths
arrive at limited delay intervals and occupy a limited range
in the delay domain [1]. This reduces the size of the channel
matrix from Nc ×Nt to Na ×Nt (Na < Nc).

To further decrease the feedback overhead of DL CSI and
enable accurate CSI recovery at the BS, we apply the typical
DNN-based encoder-decoder framework for CSI compression
and reconstruction. The encoder Eϕ compresses the channel
matrix Ha into its compact representation, i.e., codewords v
based on the desired compression ratio:

v = Eϕ(Ha). (3)

Once the BS receives the codewords v sent from the UE, a
decoder Gθ tries to reconstruct a channel matrix Ĥa from v:

Ĥa = Gθ(v). (4)

Note that ϕ and θ denote the transformation functions of
the encoder and decoder. The complete procedure can be
expressed as follows:

Ĥa = Gθ(Eϕ(Ha)). (5)



Our goal is to find a pair of encoding and decoding functions
ϕ and θ to minimize the difference between the original matrix
Ha and the reconstructed one Ĥa:

(θ, ϕ) = argmin
θ,ϕ

∥ Ha −Gθ(Eϕ(Ha)) ∥ . (6)

B. Physical Model of Wireless Channels

Wireless channels characterize the signal distortion during
its propagation in the physical space. If a signal x is transmit-
ted through a wireless channel h, the received signal y can be
expressed as y = hx + z where z is the additive noise. The
specific distortion depends on the physical attributes of both
the propagation paths and the transmitted signal. Specifically,
the wireless channel of a narrow band signal from a transmitter
to a receiver can be expressed as [9]:

h(f) =

K∑
i=1

a(f, di)e
−j2π

dif

c +jϕ(f,di) (7)

where K denotes the number of propagation paths, f denotes
the signal frequency, di denotes the length of the i-th path,
c denotes the light speed, a(f, di) denotes the amplitude
attenuation, and ϕ(f, di) denotes an additive phase due to the
scattering or reflection during the propagation.

Given a BS with an array of Nt antennas, the channel of
the n-th antenna can be expressed as [10]:

hn(f) =

K∑
i=1

(a(f, di)e
−j2π

dif

c +jϕ(f,di))e−j2π
nlcosθi

c/f (8)

where θi denotes the angle-of-departure (AoD) of the i-th
propagation path, di denotes the propagation distance of the
i-th path from the first antenna, and l denotes the antenna
separation between antennas as depicted in Fig. 4(b), e.g.,
usually from a quarter of a wavelength to half a wavelength.

III. KEY OBSERVATIONS

In this section, we illustrate our key observations to inspire
a better design for CSI compression and reconstruction.

A. Multipath Effects on CSI Compression

Recent works [1–6] leverage DNN-based encoder-decoder
framework to compress CSI at the UE and then recover it at the
BS. Unfortunately, it is found that SOTA systems encounter
performance degradation in the outdoor scenario as in Fig. 1.

To investigate the reason for consistently worse performance
on the outdoor dataset, we analyze the multipath distributions
of two public datasets utilizing the well-known MUSIC algo-
rithm [11]. Specifically, we calculate the covariance matrix of
CSI matrix, then calculate the eigenvalues of the covariance
matrix. We split the signal and noise subspace by selecting
p largest eigenvalues based on the SNR ratio. Assuming that
the noise part takes up around 2% energy of CSI matrix, i.e.,
17dB SNR, the number of multipaths is then calculated as
the number of eigenvalues contributing 98% energy overall.
It turns out that the outdoor dataset features much richer
multipaths (i.e., ‘multipath-rich’ scenario) than the indoor one
(i.e., ‘multipath-simple’ scenario) as shown in Fig. 2.

Fig. 2: Multipath distributions across various datasets.

To further validate whether the richness of multipath influ-
ences the model’s performance, we split the test set of the
‘multipath-rich’ dataset into four subsets based on the number
of multipaths in each CSI sample: [0, 4], [5, 8], [9, 12] and
[13, 17]. Then, we run the trained SOTA models including
CSINet [1], CRNet [6] and SRNet [3] on all subsets, respec-
tively. As shown in Fig. 3, it is noted that the error of channel
reconstruction increases with the number of multipaths in
the test samples, though these models are already trained on
the ‘multipath-rich’ dataset. Our investigation shows that the
difficulty level of deep CSI compression is highly correlated
with the richness of multipaths.
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Fig. 3: The channel reconstruction performance of SOTA
models degrades with richer multipath effects.

B. CSI Unique Feature: Stripe-based Correlation

Multipath effects on CSI compression encourage us to think
about the formation mechanism of our compression target—
CSI matrix. Many existing works regard them as ordinary 2D
matrice like images and borrow many image-relevant tech-
niques such as convolution operations to build their systems.

However, we argue that it is essential to exploit the unique
CSI matrix features for better CSI compression. The BS in
mMIMO system samples the signal spatially from antennas
and with different frequencies from subcarriers. Assuming the
measured CSI matrix H ∈ CNc×Nt in the spatial-frequency
domain carries a signal path at a certain AoD and propagation
delay, we can ideally apply DFT to obtain the angular-delay
version Ha ∈ CNa×Nt with a corresponding pixel element.
However, the spatial and temporal resolutions are limited by
the window size, i.e., the number of antennas and subcarriers.
This windowing effect will diffuse the energy of an element
in both horizontal and vertical directions of the CSI matrix.
Specifically, the signal would be convolved with sinc functions
due to the windowing effect in DFT. This sinc function leads
to spectral leakage and transforms the peak at a certain AoD
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Fig. 4: Illustration of stripe features in angular-delay CSI.

to a stripe across the whole angular domain and the peak at a
certain delay to a stripe across the whole delay domain.

To intuitively present the formation of the stripe features of
CSI matrix, we simulate a toy setting with two signal paths
shown in Fig. 4(b). There are two DL paths, denoted as (AoD,
propagation delay) from the BS to the UE. One path is (87◦,
348 m), while the other is (37◦, 108 m). They have the same
signal strength for simplicity. Ideally, two paths correspond to
two pixels of the CSI matrix in the angular-delay domain as in
Fig. 4(a). However, due to limited antennas and subcarriers, the
spectral leakage may occur when the AoD and delay are not
exactly the integral multiple of the angular resolution c/f

Ntlcos(θ)
and the delay resolution c

B , where B is the bandwidth of
subcarriers. This spectral leakage spreads the energy from the
peak across the whole stripes as shown in Fig. 4(c), denoted as
stripe features of the angular-delay CSI in our work. Though
the real sample from the multipath-rich dataset (Fig. 4(d)) is
more complex due to the complicated environmental effects
like scattering, it also presents apparent stripe features.

To sum up, our compression target, the CSI matrix, differs
from images: images have strong correlations in local patch
regions, while CSI matrix presents strong correlations across
the stripe regions. This observation inspires us to tailor the
deep CSI compression system for the stripe-based correlation
rather than the patch-based one.

IV. SYSTEM DESIGN

In this section, we elaborate on our design, CSI-
StripeFormer to exploit the stripe features for better CSI
compression and reconstruction in mMIMO system.
A. Overview of Key Designs

CSI-StripeFormer features a lightweight encoder on the UE
side and a powerful decoder on the BS side, considering their
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Fig. 5: The architecture of CSI-StripeFormer encoder1.

asymmetric capacity and resources. We adopt the asymmetric
convolution kernels [8] as the key components of the encoder
(Fig. 5) to well capture various shaped features. Then, we
incorporate designs tailored for stripe features of the CSI
matrix in the decoder (Fig. 6).

Firstly, the stripe-based correlation requires the model to
have a global receptive field, i.e., small convolution kernels
with a limited receptive field extensively used by previous
works may not be suitable. Thus, we leverage a hierarchical
Transformer-based architecture as the backbone to enable a
stripe-aware global receptive field. Secondly, due to the stripe-
based correlation, a signal contributes energy to other compo-
nents in the same horizontal and vertical stripes, i.e., one ele-
ment is the superimposition of multiple signals. Besides, one
signal in CSI matrix is jointly determined by elements of the
angular and delay domains. However, the two domains have
different physical characteristics like window size, resolution,
and energy distributions. Thus, the model should be equipped
with the capability to extract correlations of the components in
the stripes as well as combine information from both the hori-
zontal and vertical directions. Therefore, we propose to design
StripeFormer, a Transformer-based architecture enhanced with
a hybrid attention mechanism (Fig. 7) in the decoder.

Note that in Fig. 5 and Fig. 6, the configuration of convo-
lution and transposed convolution kernels is denoted as quad-
tuple (input channel, output channel, kernel size, stride). The
configuration of StripeFormer Layer (SFL) in Fig. 6 is denoted
as a quad-tuple (number of StripeFormer Blocks (SFBs), split
size, number of heads, embedded dimension).
B. CSI-StripeFormer Encoder

The encoder acts as the compressor on the UE side. Since
the UE is resource-sensitive, our major design consideration on
the encoder is to balance the complexity and the performance.
Our resultant design is illustrated in Fig. 5, including three
main functional components: real-imaginary fusion block,
feature extraction block, and compression block.

We first utilize the real-imaginary channel fusion block [2]
to handle the complex values of the CSI matrix. Basically,
an element in CSI matrix has both real and imaginary parts,
which determine the signal’s phase and amplitude jointly. This
block takes the real and imaginary input channels as inputs
(R2×Na×Nt ), and fuses them with a point-wise convolution.
It enlarges the input channels from 2 to a higher dimension
(e.g., 32 in our settings) representation fc ∈ R32×Na×Nt .

1The performance is similar if we replace ReLU as LeakyReLU(0.3).
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Inspired by the stripe observation, regions with high corre-
lations may not be regular rectangles or squares. Therefore,
we adopt asymmetric convolution blocks (ACBlock) [8] in-
stead of conventional convolutional kernels in the subsequent
blocks to well capture various shape features. ACBlock can
preserve features from multiple shapes without introducing
extra computing burdens during the deployment, fulfilling
the lightweight requirement of UE. For example, a 3 × 3
asymmetric kernel is made up of one 3× 3 kernel, one 1× 3
kernel for horizontal features, and one 3×1 kernel for vertical
features during training. Upon deployment, the weights of the
three kernels are fused to form a normal 3 × 3 kernel. For
more details, we refer readers to ACNet [8].

Given the fused feature matrix fc ∈ R32×Na×Nt , the feature
extraction block with two stacked ACBlocks transforms it into
the informative embeddings. The first ACBlock is a 7 × 7
kernel with a stride of 4 to split the spatial size (Na, Nt) as
(Na

4 , Nt

4 ) patches. The second one is a 5×5 kernel to expand
feature dimension from 32 to 64 to generate informative
representations pc ∈ R64×Na

4 ×Nt
4 . Finally, we design the

compression block to compress the high dimension feature
maps pc ∈ R64×Na

4 ×Nt
4 . It reduces the spatial size using two

5 × 5 ACBlocks with stride = 2 to get vc ∈ RC′×Na
16 ×Nt

16 ,
where C ′ is configurable according to the required CR. The
final output v ∈ RC′·Na

16 ·Nt
16 is the reshaped vector of vc.

Based on Equation 3, the compression ratio of the encoder
can then be calculated as:

CR =
Size(Ha)

Size(v)
=

2 ∗Na ∗Nt

C ′ ∗ Na

16 ∗ Nt

16

=
512

C ′ (9)

C. CSI-StripeFormer Decoder
The decoder aims to recover the original CSI matrix

(R2×Na×Nt ) from the compressed codewords v ∈ RC′·Na
16 ·Nt

16 .
Compared with resource-sensitive UE, the decoder on the BS
side has few computing constraints, leaving us with more

room to design powerful models. The core component of CSI-
StripeFormer decoder is a novel stripe-attention Transformer
block to exploit the stripe-based correlations in CSI matrix in
an end-to-end manner. There are three main components in
the decoder: Upsampler, StripeFormer and Channel Reducer,
as shown in Fig. 6.
1) Upsampler

We firstly reshape the compressed vector v ∈ RC′·Na
16 ·Nt

16

back to RC′×Na
16 ×Nt

16 , and then feed it to the Upsampler block.
The Upsampler block contains four transposed convolution
kernels, each followed by batch normalization [12] and
LeakyReLU [13]. As a coarse recovery, it performs upsam-
pling to generate a matrix md ∈ RD×Na×Nt with the same
spatial size as the original CSI matrix, where D denotes the
number of feature maps as the embedded dimension.
2) StripeFormer

To fully exploit the stripe-based correlation, we propose
StripeFormer as the backbone of our decoder. Taking an
overview perspective from Fig. 6, StripeFormer consists of
four StripeFormer Layers (SFLs) shown in Fig. 6(a). The key
component of each SFL is the StripeFormer Block (SFB)
shown in Fig. 6(b), while the key component of each SFB
is the hybrid attention block shown in Fig. 7. Next, we will
illustrate the technical details of StripeFormerin a bottom-to-
up manner, i.e., we first elaborate on the mechanism of hybrid
attention, then introduce the SFB design, and finally describe
the design of SFL and the overall StripeFormer.
Hybrid Attention: In SFB, we design a hybrid-attention
mechanism as shown in Fig. 7 to improve the CSI reconstruc-
tion performance via explicitly embedding the unique stripe-
based correlation of the CSI matrix. It extracts stripe-based
correlations in the CSI matrix via two steps: Angular-Delay
Self-Attention and Angular-Delay Cross-Attention.
1. Angular-Delay Self-Attention: The stripes in two domains,



i.e., angular and delay, have different physical characteristics
like window size, resolution, energy/noise distributions etc.
Thus, we adopt CSWin Attention [14] to model stripe-based
correlations separately within two domains. In a nutshell, we
project the D−dimension input feature X ∈ RD×Na×Nt

linearly into K heads based on multi-head self-attention
mechanism [15]. The first K/2 heads conduct self-attention
for the horizontal stripes, while the remaining K/2 computes
self-attention for the vertical ones.

For the self-attention of the horizontal (angular) domain,
X is evenly split into non-overlapping horizontal stripes
[H1, H2, ...,HM ] with stripe width w in the vertical (delay)
domain. Stripe widths denote the size of the area under con-
sideration. Supposing the dimensions of the projected queries,
keys, and values of the k-th head are dk, the self-attention
output of the horizontal domain is calculated as:[

H1, H2, ...,HM

]
= Split(X),[

Qk
i ,K

k
i , V

k
i

]
=

[
HiW

k
Q, HiW

k
K , HiW

k
V

]
,

Ak
i = Softmax

[Qk
i (K

k
i )

T

√
dk

]
,

LePE(V k
i ) = Conv(V k

i ),

Ok
i = Ak

i V
k
i + LePE(V k

i ),

H-Attenk(X) = [Ok
1 , O

k
2 , ..., O

k
M ],

H-Atten(X) = [H-Atten1(X), ...,H-AttenN (X)].

(10)

Here, the query Qk
i , key Kk

i and value V k
i are learn-

able linear embeddings of Hi with the projection matrices
W k

Q ∈ RC×dk ,W k
K ∈ RC×dk ,W k

V ∈ RC×dk , respectively.
Ak

i is the attention map calculated from the correlations of
the query and key with a softmax function. Then we can
calculate the features Ok

i from the production of attention
maps AK

i and values V k
i . Note that the attention mechanism

is permutation-invariant, it may ignore important positional
information within the CSI matrix. Thus, we add a local
positional encoding computed by a convolutional kernel [14]
to compensate for this positional information. The attention
outputs of horizontal (angular) stripes H-Attenk(X) are a
concatenation of [Ok

1 , O
k
2 , ..., O

k
M ], representing the k-th head

results. The final result of H-Atten(X) is the concatenation
of M heads where N = K/2. Self-attention for the vertical
(delay) domain can be derived similarly. We denote the self-
attention output of the vertical stripe as V-Atten(X).
2. Angular-Delay Cross-Attention: Based on Equation (8) and
the stripe-based correlation illustrated in Section III-B, an
element in the angular-delay CSI matrix is determined by other
angular and delay components in the same stripes. Considering
the varying wireless channels, we utilize a residual cross-
attention module [16] to dynamically capture the correla-
tion features between two single-domain attention outputs,
H-Atten(X) and V-Atten(X).

The major difference between self-attention and cross-
attention is: the former calculates the query Q, key K, and
value V from the same domain, while the latter derives the
query, key and value from different domains. Formally, the
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𝑘/2
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Fig. 7: Hybrid Attention in StripeFormer Block.

cross-attention output CrossAtten(X1, X2) is defined as:[
QX2

,KX2
, VX1

]
=

[
X2WQ, X2WK , X1WV

]
,

CrxAtten(X1, X2) = [Softmax(QX2K
T
X2

)]VX1 +X1.
(11)

In our design, we fuse the correlations of angular and delay
domains by using one single domain as (query, key), and the
other domain as value. The final output Y of hybrid attention
block is the concatenation of the fused attention features:

H-V Atten = CrxAtten(H-Atten(X), V-Atten(X)),
V-H Atten = CrxAtten(V-Atten(X), H-Atten(X)),

Y = Concat
[
H-V Atten,V-H Atten

]
WO,

(12)

where WO ∈ RD×D is the commonly used projection ma-
trix to project the attention results to the target dimension.
StripeFormer Block (SFB): As shown in Fig. 6(b), SFB
consists of hybrid attention block, layer normalization (LN)
block [17] and multilayer perceptron (MLP) block. The formal
specification of SFB is as follows:

X̂ l = Hybrid-Attention(LN(X l−1)) +X l−1,

X l = MLP(LN(X̂ l)) + X̂ l.
(13)

Here, X l is the output of the l-th StripeFormer block or the
output of the convolutional embeddings.
StripeFormer Layer (SFL) and StripeFormer: Besides the
major stripe-based correlations, the elements in the CSI matrix
with adjacent delays or AoDs may have correlations. Thus,
we design the SFL as a two-branch structure (Fig. 6(a)) to
jointly consider stripe features and potential patch features.
One branch consists of a series of SFBs to capture stripe
features, while the other utilizes a convolution kernel for local
features. Since the computational cost of attention mechanism
grows as O(n2) with the input size n. In the stripe branch, we
first adopt a convolution kernel to embed the input into patches
for computation reduction and a transposed convolution kernel
to recover the output of SFBs back to the original input size.
The final output of SFL is the sum of the two branches.
Several stacked SFLs with different split sizes construct the
final hierarchical architecture of StripeFormer. We denote the
output of StripeFormer as sd ∈ RD×Na×Nt , where D is the
embedded dimension of StripeFormer.

3) Channel Reducer

We adopt three convolution kernels as Channel Reducer
to reduce the high dimensional output of StripeFormer. It
gradually reduces sd from RD×Na×Nt to R2×Na×Nt , i.e., the
size of the original angular-delay CSI matrix.



V. EVALUATION

A. Evaluation Methodology
1) Dataset and Metric

To ensure a fair comparison, we adopt a public benchmark
dataset [18] used by many channel compression works [1–
6]. The CSI samples are generated by the widely-recognized
COST2100 channel model [7]. The BS has Nt = 32 uniform
linear array antennas, and each UE has Nr = 1 antennas.
There are Nc = 1024 subcarriers with 20 MHz bandwidth.
The dataset contains two typical scenarios. One is the indoor
picocellular scenario at the 5.3 GHz band, while the other
is the outdoor rural scenario at the 300 MHz band. BS is
positioned at the center of 20 m square area in the indoor
case and 400 m square area in the outdoor case. UEs are
randomly positioned in the area. The initial ‘cut-off’ com-
pression is set as Na = 32 to keep the first 32 rows of
the original 1024-subcarriers CSI matrix. DFT is applied to
transform the spatial-frequency CSI into the angular-delay one
Ha ∈ R2×32×32. Each scenario contains 150K CSI samples,
100K for training, 30K for validation, and 20K for testing.

To evaluate model effectiveness, we measure the accuracy
of the CSI reconstruction via evaluating Normalized Mean
Square Error (NMSE) as the quantitative metric.

NMSE = E
[
∥ Ha − Ĥa ∥2

∥ Ha ∥2

]
. (14)

2) Training Scheme and Model Hyper-parameters
We implement our system with PyTorch on a server with

one NVIDIA GPU 3090 card. We use the Mean Squared
Error as the loss function to optimize the model towards
the objective in Equation 6. We train the model with Adam
Optimizer [19] for 1000 epochs with a batch size of 200 for
the outdoor dataset and a batch size of 400 for the indoor
dataset. The learning rate is warmed up to 1e−4 in 30 epochs
and reduced to 5e−6 with the cosine decay scheme used by
CRNet [6] for the outdoor dataset, while warmed up to 2e−4

for the indoor dataset. For multipath-simple indoor dataset, we
adopt data augmentation including adding noise, flipping over
vertical and horizontal axes, mixing up with other samples [20]
and phase rotation [21] to mitigate the potential overfitting
issues during training without extra burdens in deployment.

We denote the hyper-parameter configuration of the con-
volution kernel and transposed convolution kernel as tuple
[cin, cout, k, s, p], indicating the input channels size, output
channels size, kernel size, stride, and patch size. All transposed
convolution kernels are set with output padding = 1.
Encoder: The configuration of the real-imaginary fusion, fea-
ture extraction, and compression blocks are {[2, 32, 1, 1, 0]},
{[32, 32, 7, 4, 3], [32, 64, 5, 1, 2]} and {[64, 32, 5, 2, 2],
[32, C ′, 5, 2, 2]}. C ′= 512

CR is set according to the required
compression ratio CR (Equation 9).
Decoder: The Upsampler consists of four transposed
convolution kernels: {[C ′, 512, 3, 2, 1], [512, 256, 3, 2, 1],
[256, 128, 3, 2, 1] and [128, D , 3, 2, 1]}, where D=128
is the default embedded dimension of StripeFormer.

StripeFormer splits the input with a (2, 2) patch size
for the outdoor dataset and (4, 4) for the indoor dataset.
StripeFormer contains 4 SFLs. The four layers are equipped
with 2, 2, 6, and 2 SFBs respectively. The numbers of heads
and the split widths for computing attention in four SFLs
are (2, 4, 8, 16) and (1, 2, 4, 8), respectively. The Channel
Reducer has three convolution kernels with parameters of
{[D,D/2, 3, 1, 1], [D/2, 8, 3, 1, 1], and [8, 2, 3, 1, 1]}.
3) Baselines

We compare our model against the following baselines.

(a) Deep Neural Network (DNN) Based: The first channel
compression model CSINet [1] has proved that DNN-
based methods outperform compressed-sensing based so-
lutions. CSI-StripeFormer also belongs to this category.
We mainly compare our model against several SOTA
DNN-based models, including CSINet [1], CRNet [6],
TransNet [22] and ACCsiNet [23].

(b) Hybrid Model (HM) Based: They first extract important
components from sparse CSI, then use DNN models to
further compress the extracted parts. Thus, they require
extra position information to guide the DNN models.
We compare our model with two SOTA hybrid models:
SRNet[3] and IdasNet [4].

B. Overall Performance
As shown in Table I, CSI-StripeFormer achieves SOTA

performance under high compression ratios. Our model can
significantly reduce NMSE by over 7dB compared with the
best baseline SRNet [3]. We further find that our model’s
performance under CR=64 is even comparable with that of
SRNet under CR=4 in the multipath-rich outdoor scenario.
This improvement proves that our design pushes the limits
of channel reconstruction under multipath-rich scenarios with
high CRs. It is noticed that the gain on the indoor dataset is
not as significant as the outdoor, probably because the outdoor
case features richer multipaths (Fig. 2) and thus benefits more
from our model.
C. Multipath Effects on CSI-StripeFormer

To evaluate the robustness of our model against multipath
effects, we evaluate CSI-StripeFormer with different multipath
conditions in the ‘multipath-rich’ outdoor dataset. As shown
in Fig. 3, our model is more robust to various conditions than
the best baseline SRNet [3].
D. Validation of Hybrid Attention

We compare the SFB with two other Transformer blocks
widely adopted in computer vision to validate the effectiveness
of the hybrid attention. We evaluate both Transformer blocks
on the multipath-rich outdoor dataset with CR=64. The first
is CSWin Transformer [14], computing the attention from
horizontal and vertical stripes separately without fusing. The
second is Swin Transformer [24], computing the local window
attention with shifted windows to extract local features. For
a fair comparison, we keep the remaining parts the same and
only replace SFB with these two blocks. We set the parameters
of CSWin Transformer the same as SFB and set the shifted



Category Model
CR=4 CR=8 CR=16 CR=32 CR=64

Indoor Outdoor Indoor Outdoor Indoor Outdoor Indoor Outdoor Indoor Outdoor

HM
SRNet -24.23 -15.43 -19.26 -13.47 -15.26 -11.31 -11.61 -9.17 -8.27 -7.80
IdasNet / / -18.87 -10.34 -13.51 -6.15 -10.13 -5.03 -9.34 -3.63

DNN

CSINet -17.36 -8.75 -12.70 -7.61 -8.65 -4.51 -6.24 -2.81 -5.84 -1.93
CRNet -26.99 -12.71 -16.01 -8.04 -11.35 -5.44 -8.93 -3.51 -6.49 -2.22

ACCsiNet / / / / -14.81 -11.76 -11.00 -9.14 -7.46 -7.11
TransNet -32.38 -14.86 -22.91 -9.99 -15.00 -7.82 -10.49 -4.13 -6.08 -2.62

Ours -26.24 -22.50 -22.29 -20.35 -16.80 -18.86 -12.48 -16.86 -9.37 -14.89

TABLE I: NMSE(dB) of channel reconstruction across various compression ratios (CR) and datasets.
(“Bold” represents the best performance, “Underline” represents the second best performance, and ”/” means no reported performance.)

window size to 4 for Swin block. As shown in Table II,
the SFB with hybrid attention achieves the best performance,
validating the effectiveness of the proposed hybrid attention
mechanism. It is also noticed that CSWin performs better than
Swin. This implicitly supports our insights on exploiting the
stripe-based correlation to tailor the model design for learning
a better representation of the CSI matrix.

Transformer Block Type NMSE↓ (dB)

None -4.73
CSWin [14] -12.19
Swin [24] -11.66
Our SFB -14.89

TABLE II: Comparison with other Transformer blocks.
“↓” indicates the lower NMSE the better performance.

E. Quantization Influence on CSI-StripeFormer
In practical FDD mMIMO systems, we can transmit quan-

tized values with fewer bits instead of 32-bit floats. This
quantization brings extra compression gain but may degrade
the channel reconstruction performance. We adopt uniform
quantization on the trained model to evaluate the quantization
effect. We compare our model mainly with the best baseline,
SRNet [3]. It is worth mentioning that our model is trained
without quantization for a fair comparison. As shown in Fig. 8,
our model shows little degradation when there are only 6
quantization bits. This evaluation validates that our model
can tolerate the quantization error, and still outperforms the
baselines even when they adopt 32-bit floats. The NMSE of
our model at 6 quantization bits is -13.65 dB, much lower than
SRNet’s -7.80 dB at 32 quantization bits. Thus, our model can
practically compress the CSI matrix from 64 Kbits to 192 bits
with a low reconstruction error.
F. Ablation Study

We evaluate the effects of key hyper-parameters of our
model. The ablation study is conducted under the ‘multipath-
rich’ outdoor scenario with a compression ratio of 64.
1) Impact of Embedded Dimension

The embedded dimension determines the feature space of
the model. We vary the dimension D from 32 to 256 to
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Fig. 8: Quantization effects on the multipath-rich dataset.

evaluate its effect on our model. As shown in Table III, our
model has good scalability, e.g., NMSE can be further reduced
to -25.11 dB for CR=64. Given extended embedded dimension
D=256, our model’s reconstruction error at CR=64 is much
lower (around 10 dB) than the baselines at CR=4.

D 32 64 128 256

NMSE↓ (dB) -6.07 -7.62 -14.89 -25.11

TABLE III: Impact of embedded dimension D

2) Impact of StripeFormer Layer Configuration
The default layer setting is four layers equipped with [2,

2, 6, 2] blocks separately. To evaluate the influence of layers,
we compare the default setting with four other configurations
(CFG) under the outdoor scenario with CR=64. Each con-
figuration is trained for 1000 epochs. Table IV presents the
comparison results. Comparing CFG 1 and 3, it is found that
adding more Transformer blocks with the same layers can
improve the performance. Comparing CFG 1 and 2, different
block distributions for the same block and layer numbers have
little influence. A comparison between CFG 3 and CFG 4
indicates that adding more layers with the same block number
can reduce the NMSE. This is because adding more layers can
extract different resolution features, while blocks in the same
layer only focus on the same resolution. For CFG 4 and 5, a
deeper model with more layers and blocks can perform better.
G. Network Complexity

In this part, we present the number of FLOPs (floating-
point operations per second) and parameters of our encoder



CFG Layers Split Width NMSE↓ (dB)

1 [2, 2, 6, 2] [1, 2, 4, 8] -14.89
2 [3, 3, 3, 3] [1, 2, 4, 8] -14.99
3 [1, 1, 3, 1] [1, 2, 4, 8] -13.65
4 [2, 2, 2] [1, 2, 4] -12.12
5 [2, 2] [1, 2] -9.85

TABLE IV: Impact of SFL configurations

and decoder separately. We select one Transformer-based
baseline TransNet [22], one high-performance baseline SRNet
[3] and one lightweight baseline CRNet [6] for comparison.
The results are shown in Table V. Basically, we offload the
computing burden from UE to BS since BS has sufficient
computing resources. From Table V, our encoder is relatively
lightweight compared with TransNet [22] but has a much
better performance. Our decoder is heavier in exchange for
significantly better channel reconstruction performance.

Model CR
UE BS

NMSE↓ (dB)
Params FLOPs Params FLOPs

CRNet 32 131K 383K 136K 3.23M -3.51
TransNet 32 271K 16.91M 276K 16.97M -4.13

SRNet 32 58K 238K 2.07M 658M -9.17
Ours 32 165K 7.50M 11.38M 5.76G -16.86

TABLE V: Model parameters and FLOPs

VI. DISCUSSION AND FUTURE WORK

1) Model Compression
We currently exchange model complexity for significantly

better channel reconstruction performance via a heavier but
more powerful decoder in the resource-rich BS. Nevertheless,
it is desirable to have the best of both worlds: a lightweight yet
powerful design. It is expected that the promising progress on
techniques including model compression [25], pruning [26]
and distillation [27] could be integrated to make the design
more lightweight while preserving much of its capability.
2) Scenario Adaptation

As the indoor/outdoor distribution shift shown in Fig. 2, cur-
rent deep CSI compression systems including ours train a ded-
icated model for each scenario, which may cause performance
differences. It is envisioned that they can be deployed to indoor
microcells and outdoor BSs respectively. However, it is worth
pursuing a universal model across various scenarios (domains).
We think this problem falls in the scope of domain adaption
widely discussed in the ML community [28]. In our future
work, we plan to integrate relevant domain generalization
techniques [29–31] to design unified CSI compression models
easily adapted to various scenarios. This will also reduce the
data collection burden and speed up practical deployment.
3) Real-World Deployment

Our work is currently evaluated on the public dataset used
by most existing works to facilitate comparison. Towards real-
world deployment, we plan to build a prototype platform and

conduct further evaluation on the CSI collected in real envi-
ronments like [32] to investigate the model robustness against
practical factors, e.g., the impact of hardware imperfections
on CSI in our future work.

VII. RELATED WORKS

There are two lines of research for CSI feedback reduction
related to our work: 1) leverage known UL CSI to infer DL
CSI; 2) compress the DL CSI at UE and reconstruct at BS.

For the former, existing works [10, 33, 34] transform the UL
channel to the DL channel since both signals experience the
same physical paths. However, the performance may degrade
under increased DL and UL frequency difference [32] due
to partial reciprocity [35]. Our work belongs to the second
category and is immune to this issue.

For the latter, compressed sensing (CS)-based methods [36–
38] utilize the sparsity of the CSI matrix to project it into a
low-dimension space. However, CSI matrix is not always low-
ranking or sparse under complicated wireless environments.
Thus, DNNs have been adopted to relax the sparsity assump-
tion. CSINet [1] is the first to explore CNN for CSI compres-
sion, outperforming the CS-based methods under various CRs.
Motivated by this performance gain, many follow-up works,
including CLNet [2], SRNet [3], IdasNet [4], CSINet-LSTM
[5], CRNet [6], ACCsiNet [23] and so on, have been proposed
to improve CSI compression. However, most of them treat
CSI as images without considering the uniqueness of CSI.
TransNet [22] also uses the Transformer [15] as the backbone.
However, it just applies the Transformer without considering
CSI domain information. Our work reveals the intrinsic stripe-
based correlation across channel components of CSI matrix,
and design a stripe-aware encoder-decoder framework to en-
able better CSI compression under high compression ratios.

VIII. CONCLUDING REMARKS

In this work, we identify the multipath effects on channel
compression and present a unique observation on stripe-based
correlation of the angular-delay CSI matrix. We then exploit
this insight to design a stripe-aware encoder-decoder frame-
work, CSI-StripeFormer to enable better CSI compression.
We propose to explicitly incorporate stripe features into the
model design with a novel hybrid attention module and a
hierarchical Transformer-based architecture. It is believed that
CSI-StripeFormer advances the field of channel compression
towards practical usage in massive MIMO systems.
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