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Abstract—This paper presents DriveSafe Inspector, a fine-
grained driver hand position monitoring system, which contin-
uously detects a driver’s hand position on the steering wheel.
The steering wheel is divided into twelve 30◦ sectors like a
clock. Our system can be applied on off-the-shelf hardware
and works without extra modification to vehicles. In our system,
sensor readings from both a wearable and its paired smartphone
are fused to infer hand posture and turning angle between
static holding states. With both static holding and dynamic
turning information, our system achieves fine-grained hand
position prediction in the presence of diverse road conditions
and inter-individual differences. The on-road evaluation shows
that our system can achieve an average 91.59% hand position
detection accuracy with only static information, and can be
further improved to 94.63% accuracy combined with dynamic
turning information.

I. INTRODUCTION

According to statistics, there were around 222 million
drivers holding a valid driving license in the U.S in 2016.
Besides, the number grows around 1 to 4 million per year [1].
To protect both drivers and passengers, it is important for
the drivers to hold the steering wheel correctly [2]. Wrongly
holding the steering wheel could delay a driver’s response
to unexpected traffic events, resulting in terrible accidents.
However, drivers may not always comply due to fatigue and
drowsiness after driving for a long time or simply bad driving
habits. A personal monitoring system that accurately detects
a driver’s hand positions and warns the driver would not only
arouse the driver’s alertness but also enable him/her to self-
improve his/her driving skills [3].

There have been many efforts to monitor drivers [4], [5],
[6]. However, these designs require additional devices such as
pressure sensors or inertial sensors installed on the steering
wheel, which prevents wide adoption in practice. Recently,
hand-worn smart devices with embedded sensors have become
popular in monitoring peoples activities. Several systems [7],
[8], [9], [10] have been developed to track drivers’ hand
movement using wearables and smartphones. They focused
on detecting whether the driver’s hands are on the steering
wheel or off the steering wheel to use phone, eat, drink
and etc. [7], [8] estimated steering turning angles relying
on pre-collected angle mapping profiles, which induces in-
convenience in practical use. This paper goes a step further
to provide an accurate hand position profile on the steering
wheel. Compared with hand on/off detection, a fine-grained
hand position profile can provide more valuable indicators to
infer other dangerous behaviors relevant to driving safety, e.g.,
overturning, underturning, and overtaking. In addition, these
profiles could help driving schools study trainees’ learning
processes to improve teaching, which would enhance traffic
safety in the long term. It is believed that the fine-grained
driver hand position detection is an important building block
for the emerging automotive IoT ecosystem [11].

Therefore, this paper proposes DriveSafe Inspector, a driver
hand position monitoring system to provide fine-grained hand
position profile. Our key idea is that when the driver’s
hands are in different positions on the steering wheel, the
gravity would result in different accelerometer readings on
the hand-worn device(see Fig.1). Although the idea sounds
straightforward, there are some challenges in practice. Firstly,
actual routes may cover different regions like city street or
mountain path, or may consist of various terrains, such as
flat and hilly, which increases the difficulty of sensor fusion.
Besides, we found that driver’ hands are more flexible and
have more motion variance in some positions on the steering
wheel, which results in more ambiguity between different
hand positions and reduces the system’s performance. We also
need to deal with inter-individual differences. People grasp the
steering wheel in their own ways due to different hand sizes
and strengths, thus we should consider such differences in the
design to make the system work for different drivers.

Fig. 1. The basic idea: gravitational acceleration ~g in wearable
coordinate frame varies when a driver hand is in different positions.
When a driver’s hand is at the 12 o’clock position, the z-axis value
is the major component of ~g; moving to the 9 o’clock position, the
y-axis value become the major component of ~g

To handle the above challenges, our system first acquires
9-axis sensor readings from the wearable and its bluetooth-
paired smartphone and conduct coordinate alignment to elim-
inate the various road condition’s interference. Then we
extract the gravity acceleration in the wearable’s coordinates
to detect different hand positions using personal customized
classifiers. Finally, turning angles between two static holding
positions are measured to mitigate the effect of inter-positional
difference.

To sum up, this paper makes the following contributions:
• This paper proposes DriveSafe Inspector, a driver hand

position monitoring system to provide fine-grained hand
position profile whilst driving, which works without the
extra hardware modification of vehicles.

• DriveSafe Inspector achieves a good performance under
diverse road conditions and different drivers by lever-
aging sensor fusion and learning techniques. Besides



that, the system measures turning angles to mitigate
the effects of inter-positional differences and further
improves detection accuracy.

• We implement the DriveSafe Inspector prototype using
off-the-shelf components and commodity smartphone.
The system achieves an average of 94.63% detection
accuracy in the on-road evaluations with different routes
and drivers.

II. SYSTEM DESIGN

This section first gives an overview of our system, a
wearable-based fine-grained driver hand position detection
system, then elaborates on the detailed designs including the
system preliminaries, classifier-aided hand position detection
and fine-tuning prediction through measurement of turning
angle.

A. System Overview

Our system basically leverages ring wearables with an in-
vehicle smartphone to infer a driver’s hand position on the
steering wheel.

Fig. 2. System Overview.

As shown in Fig.2, our system acquires 9-axis sensor
readings (i.e., accelerometer, gyroscope, and magnetometer)
from the ring wearable and its bluetooth-paired smartphone.
These readings then enter the data preprocessing module
including coordinate alignment and dynamic vehicle handling.
Both devices produce readings under their own predefined co-
ordinate frame, thus conducting coordinate alignment to align
their readings is required. Next, in-vehicle phone readings,
which represent the vehicle dynamics, are utilized to eliminate
the interference caused by the various terrains in real routes.
The preprocessing module produces the pseudo-gravity w.r.t.
wearable coordinate frame (elaborated in Section II-C), and
the gyroscope reading without a vehicle turning component
(i.e., the gyroscope readings correspond to the steering wheel
being turned by hand). In the training phase of the system
(dealing with inter-individual difference), extracted pseudo-
gravity readings would be used to train the classifier for the
current driver. In the testing phase, firstly, the system utilizes
the classifier to predict hand position based on the extracted
pseudo-gravity readings. Secondly, the system estimates turn-
ing angles based on the preprocessed gyroscope readings, and
leverages the constraints between static holding states and
the turning angle between them in time sequence to conduct
prediction fine-tuning. In summary, our system integrates both
static and dynamic turning information to provide a fine-
grained hand position profile.

B. System Preliminaries

The hand positions on the steering wheel are defined as
shown in Fig.3, where the steering wheel is divided into
twelve 30◦ sectors and each position occupies one 30◦ sector.
In our system, the position labels (blue circles in Fig.3)
remains in place even if the steering wheel (gray part in Fig.3)
is turned, e.g., when the steering wheel rotate 120◦ clockwise,
the label “1” would be in the previous position of label “9”
relative to the steering wheel (see the middle of Fig.3).

Fig. 3. Position labels in our system and positions relative to the
steering wheel. The leftmost figure shows the initial 9-3 o’clock
holding state. The middle figure shows the position labels in our
system, which remain in place even if the steering wheel is turned,
while the rightmost figure shows the positions relative to the steering
wheel, which turn along with the steering wheel. When turning more
than 90◦, one hand would loosely hold the wheel over the driver’s
lap and wait to take over the wheel soon after.

We adopt this position system because it is commonly
used in the handbook which instructs people on how to
hold a steering wheel and master push-and-pull and rotational
steering, e.g., hold the wheel at “9-and-3” when the car is
moving straight; for the push-and-pull steering method, pull
the steering wheel down to let the other hand take over at
“5” or “7” o’clock and then push the steering wheel up
to let the other hand take over at “1” or “11” o’clock; for
rotational steering, turn the wheel with your top hand to “3”
or “9” o’clock then bring your bottom hand up to “1” or
“11” o’clock. Thus, our system can be utilized to help check
whether the driver is proficient in the recommended methods.

In the following, we introduce background preliminaries for
sensor fusion in our system. The basic sensor fusion in our
system is coordinate alignment, which mainly contains two
step. Firstly, each device measures its own magnetometer and
accelerometer readings to find its rotation matrix with respect
to the earth coordinate frame. Secondly, given the rotation
matrices calculated before, the system obtains a rotation
matrix that maps wearable sensors readings to in-vehicle
smartphone’s coordinate frame. The well-known quaternion
is used to represent object orientation and rotations in three
dimensions. A sensor quaternion vector determines sensor
rotation relative to the earth’s coordinate frame (i.e., the
x-axis pointing east, y-axis pointing north, and the z-axis
pointing up), which can be calculated given magnetometer
and accelerometer readings [12]. Then the wearable rotation
relative to the vehicle (or smartphone) coordinate frame can
be figured out: qwv = qweq

−1
ve ,where qwv represents wearable

rotation relative to the vehicle coordinate frame, qve and
qwe represents vehicle and wearable rotation relative to the
earth coordinate frame. Given the quaternion, a vector in a
vehicle coordinate frame can be transformed into a wearable
coordinate frame as follows: pw = qwvpvq

−1
wv , where pv

represents a vector in a vehicle coordinate frame, and pw is
the transformed vector in a wearable coordinate frame.



C. Classifier-Aided Hand Position Detection
As shown in Fig.1, our system utilizes different gravity

acceleration in a wearable coordinate frame to differentiate
various hand positions, i.e., when the driver holds various
positions on the steering wheel, gravity poses different effect
on three axes of the wearable coordinate system since the
wearable coordinate system has various postures w.r.t. vehi-
cle coordinate system. However, it is not accurate to adopt
original earth gravity acceleration. Fig.4 shows a car on the
flat and a slope respectively, where vehicle coordinate frame
is defined the same as an in-vehicle phone’s coordinate frame.
When on the flat, the direction of gravitational acceleration,
denoted as ~g, is parallel to the z axis of vehicle coordinate
frame, while on the slope, there is an angle between ~g and the
z axis, which means even if the driver holds the same position
in two situations, the mapped ~g in wearable coordinate frames
are still different.

Fig. 4. Vehicle on different terrains: flat and slopes. ~g denotes the
gravitational acceleration, while ~gc denotes the pseudo-gravitational
acceleration, which is a unit-length vector aligned with z axis of the
vehicle coordinate frame.

What meets our system’s requirement is ~gc in Fig.4, which
is a unit-length vector aligned with z axis of vehicle coordi-
nate frame. Since the rotation matrix between the wearable
and vehicle is obtained through coordinate alignment, ~gc can
be transformed into the wearable’s coordinate frame. Now on
the flat or slope, if the driver holds the same position of the
steering wheel, transformed ~gc in the wearable’s coordinate
frame are the same, while if the driver holds different posi-
tions, transformed ~gc are different. Compared with original
gravity ~g, pseudo-gravity ~gc in the wearable coordinate frame
could be used to distinguish different hand positions without
interference induced by terrains.

Our detailed approach for classifier-aided hand position
detection works as shown in Procedure 1. The principle to
obtain transformed pseudo-gravity(Line 1-3) is elaborated in
Section II-B. AHRS refers to the standard quaternion-based
algorithm for attitude and heading reference system. Given
inertial readings, we can obtain the rotation matrix of the
vehicle coordinate relative to the wearable coordinate Rvw.
Vector ~gc in vehicle coordinate frame, i.e., [0,0,1], can be
transformed into the wearable coordinate by multiplying Rvw.
Next, the system identifies static durations of the driver’s
hand(Line 4-9). As shown in Fig.5, the driver either holds
the steering wheel or rotates it in the hands-on duration. Thus
we firstly use the variance filter to identify static durations.
There are two parameters for the variance filter, window
size Tw and variance threshold Vth. A Tw duration with the
variance of transformed pseudo-gravity smaller than threshold
Vth would be identified as one static holding state. These
two parameters control the system sensitivity to detect static
states. If choosing too small a window size Tw or too high
a variance threshold Vth, some slow turning duration may be
regarded as static holding states by mistake; while if choosing
too large a window size Tw or too low a variance threshold

Vth, some static holding durations may not be identified
correctly. Our system chooses a 0.5s window size and a 0.01
variance threshold by experiment to handle such a trade-off.
For the hands-off period, we borrow the hand on/off detection
technique proposed by Karatas el al. [7], and then exclude
all hands-off durations so that our approach can focus on
hands-on duration analysis. In the training phase(Line 10-11),
we train the random-forest classifier using the partial (25%
in this paper) driving profile of each driver. Ground truth
collection is done by using a smartphone fixed on the car seat
to record videos of the driver’s hand positions and motion over
his/her shoulder, which would be synchronized with the sensor
readings offline. Our method only needs video recordings in
the short-time initial training phase so that avoid violating the
user’s privacy in a long-time video recording. In the testing
phase(Line 12-13), the system uses the classifier to predict
hand positions. Besides, random-forest classifier also outputs
the probability of prediction, i.e., the confidence of classifier
for this prediction, which is used for fine-tuning prediction in
the next section.

Procedure 1 Classifier-aided Hand Position Detection
Input: Wearable readings: {Accw, Gyrw,Magw}, In-vehicle

phone readings: {Accv, Gyrv,Magv}
{I. Obtain transformed pseudo-gravity Gvtw}

1: Rwe = AHRS(Accw, Gyrw,Magw)
2: Rve = AHRS(Accv, Gyrv,Magv)
3: Rvw = Rve ·R−1we
4: Gvtw = Rvw · [0, 0, 1]T
{II. Identify static states Statew in time sequence Gvtw}

5: Set variance filter: window = Tw, threshold = Vth

6: Gvtw = {(xi, yi, zi)(i = 1, 2, · · ·)}
7: Denote {xi, · · ·xi+Tw−1}T as xtw, {yi, · · · yi+Tw−1}T as

ytw, {zi, · · · zi+Tw−1}T as ztw
8: if Variance(xtw, ytw, ztw) ≤ Vth then
9: Statew.append(Average({xtw, ytw, ztw}))

10: end if
{Traing Phase: Construct Random-Forest classifier RF}

11: Training Set Strain: 25% of Statew
12: RF = RF.train(Strain, hand position labels from videos)
{Testing Phase: Predict hand positon with RF}

13: Testing Set Stest: Remaining 75% of Statew
14: L′, Proba = RF.predict(Stest)
15: return Predicted Label L′, Confidence Level Proba

D. Fine-tuning Prediction through Turning Angle Measure-
ment

In the on-road evaluation, it is found driver’ hands are
more flexible and have more motion variance in some of the
steering-wheel positions, which results in more ambiguity be-
tween different positions and reduces the system performance.
Besides, it is noticed that drivers sometimes hold positions
located close to the border of two position sectors, where the
classifier has unsatisfying performance.

Based on the driving behavior analysis (Fig.5), we dis-
cover an opportunity to improve detection accuracy. Drivers
generally hold the steering wheel, then turn it to a certain
angle and may keep it there for a short time, then return to
the original position. The turning angle and its two adjacent
holding states should satisfy a certain condition in the time-
domain sequence, e.g. 9 o’clock plus the 60 ◦ clockwise angle
moves to 11 o’clock. The detailed approach of fine-tuning
prediction works as illustrated in Procedure 2.



Fig. 5. In hand-on duration, the driver either hold the steering wheel
or rotate it. One turning angle and its two adjacent holding positions
in time sequence should satisfy a certain conditions.

Procedure 2 Framework for Prediction Fine-tuning
Input: Testing set Stest with prediction L′ and confidence

level Proba
{I. Extract gyroscope readings for hand rotation Gyrh}

1: Gyrvw = Rvw ·GyrTv , Gyrh = Gyrw −Gyrvw
{II. Trigger condition check based on Proba}

2: Denote li as predicted label x’th entry in Stest with
confidence level pi

3: confidence threshold: Cth, off-center threshold: Oth

4: for li in Stest do
5: if pi ≤ Cth then
6: Find the nearest lj with high-confidence pj > Cth

7: In-between angle Aturn = Integrate(Gyri→j
h )

8: if Aturn /∈ [30 · (li − lj)−Oth, 30 · (li − lj) +Oth]
then

9: li = (lj +
Aturn

|Aturn|b(|Aturn|+Oth)/30c) mod 12
10: end if
11: end if
12: end for
13: return Stest with fine-tuned prediction Ltune

To leverage the constraints mentioned above, the turning
angle between two static holding states first should be inferred.
As shown in Fig.5, when the driver turns the steering wheel,
the ring wearable also experiences the same rotation. Thus,
gyroscope readings from the wearable are a combination of
the angular velocities of hand turning and car turning. To
obtain the component of hand turning, our system measures
the vehicle’s angular velocity by an in-vehicle smartphone
and subtracts it from the wearable readings after coordinate
alignment (Line 1).

The small blue rectangles in Fig.5 denote the wearable and
show its approximate moving trajectory when the driver turns
the steering wheel 60◦ clockwise from the 9 o’clock position.
The rotation axis of the wearable is constant, in the center of
the steering wheel and orthogonal to the wheel plane. A vector
named simultaneous orthogonal rotations angle (SORA) [13]
can be calculated through integration on the preprocessed
gyroscope reading, whose components are the angles of three
simultaneous rotations around coordinate system axes. For the
rotation with a constant axis, the rotation angle is equal to the
magnitude of the SORA vector. Given previous predictions
and estimated turning angles, When the condition for the
turning angle and its two adjacent holding states are found
unsatisfied, the prediction with low confidence would be tuned
to meet the conditions(Line 2-12).

It is found that most prediction errors occur on the pre-
diction with low confidence. Thus, to improve computing
efficiency, our system sets a confidence threshold Cth to
control the trigger timing for the condition check, i.e., the
prediction with confidence lower than threshold Cth would
trigger the angle calculation relative to the previous prediction

with high-confidence and adjusts it if conditions are not
satisfied. Furthermore, predictions with high-confidence are
generally located in the middle of every 30◦ sector as shown
in Fig.3, while predictions with low-confidence are mostly
located close to the border. Thus, through experiments, an
off-center threshold Oth is set to 10 degrees for the condition
check, e.g., given a prediction for 9 o’clock position with high-
confidence, if its subsequent prediction with low-confidence
have clockwise 20◦ to 40◦ rotation, it should be at the 10
o’clock position. Through prediction fine-tuning, our system
could increase the hand position detection accuracy from
91.59% to 94.63% on average.

III. EVALUATION

This section first introduces our experiment setting, then
elaborates the detailed evaluation results covering classifier
performance and the gain obtained by fine-tuning prediction
through turning angle measurement.

A. Experiment Setting

Fig. 6. Evaluation setting.

Our evaluation is conducted on the prototypes as shown in
the left of Fig.6. Adafruit BNO055(MEMS 3-axis accelerome-
ter, gyroscope and magnetometer) serves as the ring wearables
fixed on a magic tape. The volunteers wear it on their left
middle fingers. Sensor readings on wearables are transmitted
to the paired smartphone, Samsung Galaxy S5, through an
Arduino Uno Board equipped with Bluetooth module HC-05.
Arduino Uno, HC-05 chip and 9V battery are put in a wrist
bag to be easily worn by the volunteers. This prototype is
designed to validate the feasibility of our system. All off-the-
shelf components can be manufactured into ring wearables
like some commercial products [14]. We place the smartphone
in the middle cup holder and let its coordinate system align
with that of the vehicle in Fig.4. Another 9-axis motion sensor,
Adafruit LSM9DS0 with Arduino Micro and HC-05 module,
is attached to the steering wheel for collecting the ground truth
of the steering wheel rotation angles, which has been adopted
and proved usable as the ground truth in prior work [7]
The sampling rates are set to 60Hz on motion sensors and
smartphones, which is supported by most commodity devices.
A smartphone fixed on the car seat is used to record the
ground truth of the driver’s hand position and motion over
his/her shoulder. The image on the right of Fig.6 is one frame
captured while driving. Colorized stick notes divide steering
wheel to twelve 30◦ sectors. we also install a reference point
right above the 12 o’clock position to facilitate ground truth
labeling.

Evaluations are performed with two volunteers, one male
and one female on three different routes as shown in Fig.7,



Fig. 7. Maps of three routes that cover different regions (city street
or mountain path) and consist of various terrain(flat and slope).

comparative with previous works [8], [7]. The volunteers drive
the car in the way they normally would. To ensure diversity,
three routes are chosen to cover different regions (city street
or mountain path) and consist of various terrains (flat and
sloped), which involve smooth curves and also sharp turns.
Due to limited experiment resources, the vehicle adopted
conforms to the manufacturing standard of most general-use
cars. The system performance on a large truck or bus, where
the steering wheel may be flatter or larger requires future
investigation. We collect data for six trips over half a month
on these three routes, and obtain over 3700 samples (discrete
hand position predictions) in total for evaluation.

B. Pseudo-gravity Classifier Performance
We evaluate the pseudo-gravity classifier performance on

two driving profiles respectively.

(a) No.1 Driver Profile (b) No.2 Driver Profile

Fig. 8. Distribution for different hand position samples(denoted by
different colors), which contains the 3-axis values of pseudo-gravity
in the wearable coordinate frame.

As show in Fig.8, the 3-axis values of pseudo-gravity in
the wearable coordinate frame present a distribution along a
partial spherical surface for different hand position samples
denoted by different colors. Where the same position samples
gather together and adjacent position samples are distributed
similar to the positions on the steering wheel, reveals the
possibility of classification. Moreover, two observed driving
profiles shows differences to each other. More comprehensive
measurements in [15] also validated such inter-individual
differences. They utilized driving a simulator equipped with
a 3D motion capture system to record the hand positions
of 20 volunteers in 6 driving scenarios involving 7 road
geometries. The results showed that most drivers maintained
a nearly identical strategy for all road geometries, while inter-
individual differences were much larger than intra-individual
differences. All data from 8 o’clock to 12 o’clock are used
for evaluation, while data of other positions are so scarce(no
sample or less than 5 samples) that it makes little sense
to build the classifiers with such small samples. A lack of
samples on such positions is mainly due to the wearables

being worn on the left hand, so that it comes very naturally
that most samples collected were located on the left part of
the steering wheel while driving on actual routes. However,
there is no essential difference for hand detection between
positions ‘8’ to ‘12’ and others. The training and testing sets
are from different driving trips to ensure the effectiveness of
the evaluation.

(a) No.1 Driver (b) No.2 Driver

Fig. 9. Confusion Matrices of pseudo-gravity classifiers. Most errors
occur within the diagonal alignment.

The pseudo-gravity classifier (Procedure 1) achieves
90.78% overall classification accuracy for the No.1 driver
and 92.4% accuracy for the No.2 driver, and the detailed
confusion matrices are shown in Fig.9, where x-axis denotes
the predicted label and y-axis denotes the ground truth label.
It is noticed that most errors occur within the diagonal
alignment, which is in accordance with intuition since adjacent
positions are more likely to be misclassified with each other.
Besides, some positions, such as the 12 o’clock position for
the No.1 driver, the 10 and 11 o’clock positions for the No.2
driver, have low accuracy, i.e., they are easily identified as
adjacent positions by mistake. The possible reason is that the
collected sample number for these position are relatively small
compared to other positions. The No.1 driver is accustomed
to holding the 10 and 11 o’clock positions, while the No.2
driver is used to holding the 9 o’clock one. Since volunteers
are asked to driver the car in their own natural way, it is hard
to collect more samples on these positions. Some resample
techniques, such as boosting may be leveraged to tackle this
problem, which is one of our future works.

C. Fine-tuning Prediction Performance
As introduced in Section II-D, turning angles are measured

to enhance the accuracy of prediction from the pseudo-gravity
classifier. To illustrate the detailed improvement, confidence
threshold Cth is set to 0.75 by default. In this setting, there
are 15.6% testing data with confidence value lower than
Cth. The fine-tuning technique improves the prediction on
this fraction of data to boost the system performance. The
following paragraphs show the improvement in per-person
training results.

As shown in Fig.10, the prediction accuracy among samples
with a confidence higher than 0.75 are 96.74% and 99.72%
respectively, however, the accuracy among samples with con-
fidence lower than 0.75 are 55.63% and 47.46% respectively.
By setting the confidence threshold Cth to 0.75, the high-
confidence prediction part remains unchanged, while the low-
confidence part can be improved to 77.49% and 64.41%
respectively so that the overall classification accuracy would
be raised from 90.78% and 92.4% to 94.24% and 95.01%
respectively. Thus, the purpose of the confidence threshold
Cth is that, on the one hand, the advantages of high-confidence
prediction can be preserved, on the other hand, fine-tuning



(a) No.1 Driver (b) No.2 Driver

Fig. 10. Detailed improvement through fine-tuning when setting the
confidence threshold to 0.75. Prediction fine-tuning achieve 3.46%
and 2.61% gain in overall accuracy for two drivers respectively.

efforts can be made focusing on the error-prone part so that
unnecessary turning angle computing is avoided.

After fine-tuning , the detailed confusion matrices are
shown in Fig.11, where x-axis denotes the predicted label and
y-axis denotes the ground truth label. Compared with matrices
in Fig.9, it is seen that the previous low-accuracy parts are
mitigated, which validates the effectiveness of fine-tuning.

(a) No.1 Driver (b) No.2 Driver

Fig. 11. Confusion Matrices after fine-tuning on the previous
prediction from pseudo-gravity classifier with confidence threshold
Cth = 0.75

We also evaluate the fine-tuning gain with different con-
fidence thresholds as shown in Fig.12. It is noticed that
if the confidence threshold is set too low, the fine-tuning
gain becomes tiny since the candidate set for fine-tuning
is small. However, it is not recommended to set too high
a confidence threshold, which induces unnecessary turning
angle computing and checking, and the fine-tuning gain has
become saturated or even decreased a little. Fig.12 shows that
the best threshold may vary from person to person, and it is
generally acceptable to set the confidence threshold between
0.7 to 0.8.

(a) No.1 Driver (b) No.2 Driver

Fig. 12. Fine-tuning gain with different confidence thresholds.

With a trained classifier, the process including prediction
using static holding information and fine-tuning using dy-
namic turning information can be completed within 1 second

on the Samsung Galaxy S5, which indicates the system is
capable of providing immediate feedback to drivers in real
situations.

IV. CONCLUSION

This paper presents DriveSafe Inspector, a fine-grained
driver hand position monitoring system, which continuously
detects a driver hand’s position on the steering wheel. Our
system can be applied on off-the-shelf hardware and works
without extra modification to vehicles. To achieve our design
goal, sensor readings from both wearable and its paired smart-
phone are fused to infer the hand position and turning angle
between static holding positions. With both static holding
and dynamic turning information, our system achieves fine-
grained hand position prediction in the presence of diverse
road conditions and inter-individual differences. The on-road
evaluation shows that our system can achieve , on average,
91.59% hand position detection accuracy with only static
holding information, and can be further improved to 94.63%
accuracy when combined with dynamic turning information.
There is still room for further investigation, e.g., exploring
the correlation between a driver’s hands position profile and
the road layout (i.e., straight road, or turns) to help improve
driving skills; exploring features representing unique habitual
steering methods to facilitate driver identification.
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