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Abstract

Deep neural networks (DNNs)-powered Electrocardio-
gram (ECG) diagnosis systems recently achieve promising
progress to take over tedious examinations by cardiologists.
However, their vulnerability to adversarial attacks still lack
comprehensive investigation. The existing attacks in image
domain could not be directly applicable due to the distinct
properties of ECGs in visualization and dynamic properties.
Thus, this paper takes a step to thoroughly explore adversar-
ial attacks on the DNN-powered ECG diagnosis system. We
analyze the properties of ECGs to design effective attacks
schemes under two attacks models respectively. Our results
demonstrate the blind spots of DNN-powered diagnosis sys-
tems under adversarial attacks, which calls attention to ade-
quate countermeasures.

Introduction
In common clinical practice, the ECG is an important tool
to diagnose a wide spectrum of cardiac disorders, which
are the leading health problem and cause of death world-
wide by statistics (World Health Organization 2018). There
are recent high-profile examples of Deep Neural Networks
(DNNs)-powered approaches achieving parity with human
cardiologists on ECG classification and diagnosis (Awni Y
et al. 2019; IEEE-Spectrum 2018; Kiranyaz, Ince, and Gab-
bouj 2016; Al Rahhal et al. 2016), which are superior to
traditional classification methods. Given enormous costs of
healthcare, it is tempting to replace expensive manual ECG
examining of cardiologists with a cheap and highly accurate
deep learning system. In recent, the U.S. Food and Drug Ad-
ministration has granted clearance to several deep learning-
based ECG diagnostic systems such as AliveCor1 and Bio-
fourmis2.

With DNN’s increasing adoption in ECG diagnosis, its
potential vulnerability to ‘adversarial examples’ also arouses
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1https://www.prnewswire.com/news-releases/fda-grants-first-
ever-clearances-to-detect-bradycardia-and-tachycardia-on-a-
personal-ecg-device-300835949.html

2https://www.mobihealthnews.com/content/fda-clears-
biofourmis-software-ecg-based-arrhythmia-detection

great public concern. The state-of-the-art literature has
shown that to attack a DNN-based image classifier, an adver-
sary can construct adversarial images by adding almost im-
perceptible perturbations to the input image. This misleads
DNNs to misclassify them into an incorrect class (Szegedy
et al. 2013; Goodfellow, Shlens, and Szegedy 2014; Carlini
and Wagner 2017). Such adversarial attacks would pose dev-
astating threats to the DNN-powered ECG diagnosis system.
On one hand, adversarial examples fool the system to give
incorrect results so that the system fails to serve the purpose
of diagnosis assistance. On the other hand, adversarial ex-
amples would breed medical frauds. The DNNs’ outputs are
expected to be utilized in other decision-making in medical
system (Finlayson et al. 2018), including billing and reim-
bursement between hospitals/physicians and insurance com-
panies. Large institutions or individual actors may exploit
the system’s blind spots on adversarial examples to inflate
medical costs (e.g., exaggerate symptoms) for profit3.

To our knowledge, previous literature on DNN model at-
tacks mainly focus on the image domain, and has yet to thor-
oughly discuss the adversarial attacks on ECG recordings. In
this paper, we identify the distinct properties of ECGs, and
investigate two types of adversarial attacks for DNN-based
ECG classification system.

In Type I Attack, the adversary can access the ECG
recordings and corrupt them by adding perturbations. One
possible case is a cardiologist who can access patients’
ECGs and have monetary incentive to manipulate them to
fool the checking system of insurance companies. Another
possible case is a hacker who intercept and corrupt data to
attack a cloud-deployed ECG diagnosis system for fun or
profit. That data may be uploaded from portable patches like
Life Signal LP1100 or household medical instruments like
Heal Force ECG monitor to the cloud-deployed algorithms
for analysis. For both cases, the adversary aims to engineer
ECGs so that the ECG classification system is mislead to
give the diagnosis that he/she desires, and in the meanwhile,
the data perturbations should be sufficiently subtle that they
are either imperceptible to humans, or if perceptible, seems

3https://www.beckershospitalreview.com/legal-regulatory-
issues/cardiologist-convicted-in-fountain-of-youth-billing-fraud-
scam.html



natural and not representative of an attack. We found that
simply applying existing image-targeted attacks on ECG
recordings generates suspicious adversarial instances, be-
cause commonly-used Lp norm in image domain to encour-
age visual imperceptibility is unsuitable for ECGs (see Fig-
ure 3). In visualization, each value in an ECG represents
the voltage of a sampling point which is visualized as a
line curve. Meanwhile, each value in a image represents the
grayscale or RGB value of a pixel which is visualized as
the corresponding color. Humans have different perceptual
sensitivities to colors and line curves. As shown in Fig. 1,
when two data arrays are visualized as line curves, their
differences are more prominent rather than those visualized
as gray-scale images. In this paper, we propose smoothness
metrics to quantify perceptual similarities of line curves, and
leverages them to generate unsuspicious adversarial ECG in-
stances.

Figure 1: Perception test. There are two data arrays in the
range of [−1, 1], and the second one is obtained by adding
a few perturbations with 0.1 amplitude to the first one. Both
of them are visualized as line curves and gray-scale images.

It is worth mentioning the difference between adversar-
ial attacks and simple substitution attacks. In substitution at-
tack, the adversary replaces the victim ECG with ECG of
another subject with the target class. However, the ECGs, as
a kind of biomedical signs, are often unique to their own-
ers as fingerprint (Odinaka et al. 2012). Thus, the simple
substitution attacks can be effectively defended if the sys-
tem checks input ECGs against prior recordings from the
same patient. However, the adversarial attacks only add sub-
tle perturbations without substantially altering the personal
identifier (Figure 2).

In Type II Attack, the adversary may not be able to access
the ECGs directly or they want to fool the system without
leaving digital tampering footage. Thus, the attackers inject
perturbation to on-the-fly ECGs by physical process. The
feasibility of such attacks can be achieved by EMI signal
injection as in (Kune et al. 2013), which meant to pollute
ECGs but did not consider crafting injected signals for ad-
versarial attacks. Due to lack of equipment like patient sim-
ulator, we could not implement their prototype to conduct
physical attacks. However, we identify four major properties
of such attack that different from Type I, explicitly consider
them in attacking strategy and mimic them in evaluation.

1. There is skewing in time domain between perturbation
and ECG, since the attacker hardly knows ECG’s exact

Figure 2: Adversarial Attack v.s. Substitution attack

start time. We mimic it by shifting perturbation with vari-
ous amount before adding to victim ECGs.

2. Filtering of ECG devices, as a standard process to combat
noise, will be applied on injected perturbation and may
impair its attack effect. In evaluation, two widely-adopted
filters are applied to adversarial examples. The rectangu-
lar filter is used in generation process, since it strictly re-
moves all power within selected frequency range.

3. Type I accesses digital ECGs without showing up on the
scene, but physical injection should be conducted closer
to victim. The smaller attack duration(the part of an ECG
affected by perturbation), the lower exposure risk. Thus
we generate perturbation with different attack duration for
evaluation.

4. Physical attacks inject perturbation generated from known
ECGs to on-the-fly ECGs. The variance between them
may affect attack effect. In evaluation, perturbation gen-
erated with random selected ECGs are tested on others.
In summary, the contributions of this paper are as follows:

• This paper thoroughly investigate adversarial attacks for
DNN-based ECG classification systems. We identify the
distinct properties of ECGs to facilitate designing effec-
tive attack schemes under two attack models respectively.

• We propose a smoothness metric to effectively quantify
human perceptual distance on line cures, which quantifies
the pattern similarity in a computationally-efficient way.
Adversarial attacks using the smoothness metric achieve
a 99.9% success attack rate. In addition, we conduct an
extensive human perceptual study on both ordinary peo-
ple and cardiologists to evaluate the imperceptibility of
adversarial ECG instances.

• We model the sampling point uncertainty of the on-the-fly
ECGs and the filtering effect within the adversarial gen-
eration scheme. The generated perturbations are skewing-
resistant and filtering-resistant to tamper with on-the-fly
signals (99.64% success rate), and generalize well in un-
seen examples.

Related Works
Here we review recent works on adversarial examples, and
the existing arrhythmia classification systems.



Adversarial Examples
Recently, considerable attack strategies have been proposed
to generate adversarial examples. Attacks can be classified
into targeted and untargeted ones based on the adversarial
goal. The adversary of the former modifies an input to mis-
lead the targeted model to classify the perturbed input into a
chosen class, while the adversary of the latter make the per-
turbed input misclassified to any class other than the ground
truth. In this paper, we only focus on the more powerful tar-
geted attacks.

Based on the accessibility to the target model, the exist-
ing attacks fall into white-box and black-box attacks cat-
egories. In former manner, an adversary has complete ac-
cess to a classifier (Szegedy et al. 2013; Goodfellow, Shlens,
and Szegedy 2014; Moosavi-Dezfooli, Fawzi, and Frossard
2016; Carlini and Wagner 2017; Kurakin, Goodfellow, and
Bengio 2018), while in latter manner, an adversary has zero
knowledge about them (Papernot, McDaniel, and Goodfel-
low 2016; Moosavi-Dezfooli et al. 2017; Liu et al. 2016).
This paper studies the white-box adversarial attacks to ex-
plore the upper bound of an adversary to better motivate de-
fense methods. Besides, prior works (Papernot, McDaniel,
and Goodfellow 2016; Liu et al. 2016) have shown the trans-
ferability of adversarial attacks, i.e, train a substitute model
given black-box access to a target model, and transfer the
attacks to it by attacking the substitute one.

Adversarial attacks have been studied most in image do-
main. However, in other domains, these attack schemes may
lose effect, e.g., (Qin et al. 2019) identifies unique problems
on speech recognition and leverages properties of human au-
ditory system to generate audio adversarial examples. This
paper, however, focuses on adversarial attacks on ECG di-
agnosis, another important application domain of DNN.

In the image domain, most works adopted Lp norm as ap-
proximations of human perceptual distance to constrain the
distortion. However, for ECGs in time-series format, people
focus more on the overall pattern/shape, which can not be
fully described by Lp norm (Eichmann and Zgraggen 2015;
Gogolou et al. 2018) (see Section ‘Similarity Metrics’ for
details). Recent works (Kurakin, Goodfellow, and Bengio
2018; Athalye et al. 2018; Chen et al. 2018) have explored
the robustness of the adversarial examples in the physical
world, where the input images could not be precisely con-
trolled, and may change under different viewpoints, lighting
and camera noise. Our strategy on Type II attack is inspired
by (Athalye et al. 2018; Brown et al. 2017). Different from
images, we deal with sampling point uncertainty of the peri-
odic ECGs and the filtering function of ECG devices.

Recent works on GAN-based attacks (Xiao et al. 2018;
Song et al. 2018) focus on improve attacking efficiency to
image classification system, which can be combined with
metric computation efficiency of ECGadv in future work.
A workshop paper (Han et al. 2019) convolves perturbation
with Gaussian kernels for ECG adversarial attacks. Our pro-
posed smoothness metric and Gaussian kernels method can
be integrated to improve the system. Besides, our paper fur-
ther addresses the issues in physical ECG attacks. For the
emerging defense methods, (Athalye, Carlini, and Wagner
2018) proposed a general framework to circumvent several

published defenses based on randomly transforming the in-
put. Thus, we do not discuss defense breaking in this paper.

Arrhythmia Classification System
Considerable efforts have been made on automated arrhyth-
mia classification systems to take over tedious manual ex-
aminations. Deep learning methods show great potential due
to their ability to automatically learn features through mul-
tiple levels of abstraction, which frees the system from the
dependence on hand-engineered features. Recent works (Ki-
ranyaz, Ince, and Gabbouj 2016; Al Rahhal et al. 2016;
Awni Y et al. 2019) started applying DNN models on ECG
signals for arrhythmia classification and achieved good per-
formance. For any system in the health-care field, it is crucial
to defend against any possible attacks since people’s lives
rely heavily on the system’s reliability. Prior work (Kune et
al. 2013) has launched attacks to pollute the measurement
of cardiac devices by a low-power emission of chosen elec-
tromagnetic waveforms. The adversarial attacks and the in-
jection attacks in (Kune et al. 2013) complement each other.
The injection attack can inject the carefully-crafted pertur-
bation generated by adversarial attacks to perform targeted
attacks to mislead the arrhythmia classification system.

Technical Approach
In this section, we illustrate our attack strategies for two
threat models respectively.

Type I Attack Strategy
Problem Formulation Given an m-class classifier, g :
X → Y that accepts an input x ∈ X and produces an out-
put y ∈ Y . The output vector y, treated as the probability
distribution, satisfies 0 ≤ yi ≤ 1 and

∑m
i=1 yi = 1. The

classifier assigns the label C (x) = argmaxig(x)i to the in-
put x. Let C ∗(x) be the correct label of x. Given a valid
input x and a target class t 6= C ∗(x), an adversary aims
to generate adversarial examples xadv so that the classifier
predicts g(xadv) = t (i.e. successful attack), and xadv and
x are close based on the similarity metric (i.e. visual imper-
ceptibility). It can be modeled as a constrained minimization
problem as seen in prior works (Szegedy et al. 2013):

minimize D(x, xadv)
such that C (xadv) = t

(1)

where D is some similarity metric. It is worth mentioning
that there is no box constraints for time-series measurement.
It is equivalent to solve (Carlini and Wagner 2017):

minimize D(x, xadv) + c · fg(xadv) (2)

where fg is an objective function mapping the input to a
positive number, which satisfies fg(xadv) ≤ 0 if and only
if C (xadv) = t. One common objective function is cross-
entropy. We adopt the one in (Carlini and Wagner 2017).

fg(xadv) = (maxi6=t(Z(xadv)i)− Z(xadv)t)+ (3)

where Z(x) = z is logits, i.e., the output of all layers except
the softmax. (e)+ is short-hand for max(e, 0).



Similarity Metrics To generate adversarial examples, we
require a distance metric to quantify perceptual similarity to
encourage visual imperceptibility. The widely-adopted dis-
tance metrics in the literature are Lp norms ‖xadv − x‖p,
where the p-norm ‖·‖p is defined as ‖v‖p = (

∑n
i=1 |vi|p)

1
p .

Lp norms focus on the change in each pixel value. However,
human perception on line curves focuses more on the over-
all pattern/shape. Studies in (Eichmann and Zgraggen 2015;
Gogolou et al. 2018) show that given a group of line curves
for similarity assessment, pattern-focused distance metrics
like the Dynamic time warping (DTW)-based ones pro-
duce rankings that are closer to the human-annotated rank-
ings than value-focused metrics like Euclidean distances.
Thus, we consider using DTW to quantify the similarity of
ECGs at first. However, the non-differentiability and non-
parallelism of DTW make it ill-suited for adversarial attacks.
Recent work (Cuturi and Blondel 2017) proposes a differen-
tiable DTW variant, Soft-DTW. However, Soft-DTW does
not change the essence of DTW – a standard dynamic pro-
gramming problem. The value and gradient of Soft-DTW
would be computed in quadratic time, and it is hard to lever-
age the parallel computing of the GPU to speed it up. To
capture the pattern similarity in a computation-efficient way,
we adopt the following metric, denoted as smoothness as our
similarity metric. Given δ = xadv − x and var(·) refers to
variance calculation:

diff (δ) = δi − δi−1, i = 2, . . . , n

dsmooth(δ) = var(diff (δ))
(4)

Smoothness metric dsmooth quantifies the smoothness of
perturbation(δ) by measuring the variation of the difference
between neighbouring points of perturbation. The smaller
the variation, the smoother the perturbation. A smoother per-
turbation δ means that the adversarial instances x′ are more
likely to preserve a similar pattern to the original instance
x. In the extreme case where dsmooth = 0, δ should be a
constant and xadv = x + constant, i.e., the adversarial in-
stances xadv have the same shape as the original instance
x. It is worth mentioning that in our attack scheme, we in-
tentionally preserve the zero-mean and one-variance prop-
erty of the generated xadv , therefore the perturbation can
not be easily filtered by the normalization layer of the sys-
tem. Besides, compared with the quadratic time complexity
of Soft-DTW, the smoothness metric can be computed in
linear time, which is efficient in principle. To further quan-
tify the efficiency, we run the adversarial attacks with dif-
ferent metrics: Soft-DTW, smoothness metric and L2 norm.
Both the computing resources (AWS c5.2xlarge instances)
and the victim ECGs are the same. The average CPU time
per iteration of different metrics are shown in Table 1. The
smoothness metric can be further accelerated by GPU.

Metric dsoftdtw dsmooth dl2
CPU time/iteration 12.28s 0.05s 0.05s

Table 1: Computation Efficiency across Different Metrics

Type II Attack Strategy
Problem Formulation Given the same m-class classifier,
g : X → Y as above, in Type II attack, we explicitly
consider the filtering process in attack scheme. Filtering is
a standard process in ECG devices to combat noises be-
fore the data analysis, including baseline wandering noises
(<0.05Hz) and the power-line noises (50 or 60 Hz) (Luo
and Johnston 2010). To generate filtering-resistant pertur-
bations, we constrain the power of the perturbation within
those filtered frequency bands during the optimization pro-
cedure. We also consider the possible skewing to gener-
ate perturbations that are effective for the on-the-fly ECGs,
since it is hard for the attacker to obtain the exact time that
the device begins measuring ECGs. Inspired by Expectation
Over Transformation(EOT) (Athalye et al. 2018), we regard
such uncertainty as a shifting transformation of the original
measurement and explicitly consider such a transformation
within the optimization procedure.

Formally, given a distance function D(·, ·) and a chosen
distribution T of transformation function t, we have the fol-
lowing optimization problem:

minimize Et∼T [D(t(xadv), t(x))]+
c · Et∼T [− logP (yt|t(xadv))]

(5)

where xadv = x+h(xperturb). xperturb is the added pertur-
bation and h(·) is a rectangular filter. Specifically, we trans-
form the xperturb from time domain to frequency domain
via Fast Fourier transform. We utilize a mask to zero the
power of frequency bins for less than 0.05Hz and 50/60Hz.
Finally, inverse Fast Fourier transform will transform it back
to the time domain. Besides, we add a constraint ε1 <
Et∼T [D(t(xadv), t(x))] < ε2. ε1 is large enough that xadv
can have a large probability of successful attacks under most
shifting transformations. Since the ECG signals of the same
class share common pattern, a sufficiently large ε1 can im-
plicitly enable the universality of an adversarial sample, i.e.,
a perturbation is effective on other unseen samples of the
same class. ε2 forces the adversarial examples to be within a
certain distance constraint of the original.

Perturbation Window Size For adversarial attacks, it is
better that the perturbation attracts minimal attention of the
victim. Thus, we introduce the length of the perturbation wd

as a parameter, which could be set by the adversary and fixed
during the perturbation generation.wd gives the system flex-
ibility to control the added perturbation. The intuition behind
is that the smaller wd is, the smaller the attack duration. At-
tack duration denotes the time when the attacker try to inject
the signal. It is obviously that the less time the attacker stays
active in the crime scene, the less chance it will be perceived
by the victim. Moreover, the larger wd is, the generated per-
turbation has higher probability of having an effect on other
unseen samples of the same class(i.e., universality).

Experimental Results
In this section, we first introduce the victim DNN-based
ECG classification system for attack scheme evaluation,
then evaluate our attacks in two threat models respectively4.

4https://github.com/codespace123/ECGadv



Victim DNN-powered ECG Diagnosis Model
We apply our attack strategies to the DNN-based arrhyth-
mia classification system (Rajpurkar et al. 2017; Andreotti
et al. 2017; Awni Y et al. 2019). An arrhythmia is defined
as any rhythm other than a normal rhythm. If the detection
algorithm is mislead to classify an arrhythmia as a normal
one, the patient may miss the optimal treatment period. Con-
versely if a normal rhythm is misclassified as an arrhythmia,
the patient may accept unnecessary consultation and treat-
ment, which results in medical resources waste or frauds.

The original model (Rajpurkar et al. 2017) adopts 34-
layer Residual Networks (ResNet) (He et al. 2016) to clas-
sify a 30s single-lead ECG segment into 14 different classes.
However, their dataset and trained model are not public.
In the Physionet/Computing in the Cardiology Challenge
2017 (Clifford et al. 2017), (Andreotti et al. 2017) repro-
duced the approach by (Rajpurkar et al. 2017) on the PhyDB
dataset and achieved a good performance. The model is
the representative of the current state-of-the-art in arrhyth-
mia classification. Both their algorithm and model are avail-
able in open-source5. PhyDB dataset consists of 8,528
short single-lead ECG segments labeled as 4 classes: nor-
mal rhythm(N), atrial fibrillation(A), other rhythm(O) and
noise(v). Both atrial fibrillation and other rhythm indicates
arrhythmia. Atrial fibrillation is the most prevalent cardiac
arrhythmia. “Other rhythm” in the dataset refers to other
abnormal arrhythmia except atrial fibrillation. For note, the
accuracy of this model is not 100% on the PhyDB dataset.
Thus, to prove the effectiveness of the proposed attacks, we
only generate adversarial examples for those ECGs origi-
nally correctly classified by the model without attacks. The
profile of the attack dataset is shown in Table 2 (6081 ECGs
in total). The sampling rate of the ECGs is 300Hz, i.e., the
length of a 30s ECG is 9000.

Evaluation for Type I Attack
Experiment Setup We implement our attack strategy for
Type I Attack under the framework of CleverHans (Paper-
not et al. 2018). We adopt the Adam optimizer (Kingma
and Ba 2014) with 0.005 learning rate to search for ad-
versarial examples. We compare the performance of three
similarity metrics on adversarial examples generation, given
δ = xadv−x: (i) dl2(δ) = ‖δ‖22, (ii)dsmooth(δ) (Equation 4),
(iii) dsmooth,l2(δ) = dsmooth(δ) + k · dl2(δ), k = 0.01. All
metrics are evaluated under the same optimization scheme
with the same hyper-parameters.

Type Number Time length (s)
mean std

Normal rhythm(N) 3886 32.85 9.70
Atrial Fibrillation(A) 447 32.25 11.98

Other rhythm(O) 1488 35.46 11.56
Noisy signal(v) 260 24.02 10.42

Table 2: Data profile for the attack dataset

5https://github.com/fernandoandreotti/cinc-challenge2017

Success Rate of Targeted Attacks We select the first 360
segments of class N, class A and class O respectively, and
the first 220 segments of class v in attack dataset to eval-
uate the success rate of the targeted attacks. For each ECG
segment, we conduct three targeted attacks to other classes
one by one. Thus, we have 12 source-target pairs given 4
classes. The attack results are shown in Table 3. With all
three similarity metrics, the generated adversarial instances
achieve high attack success rates. dl2 fails in a few instances
of some source-target pairs, such as “O→ A”, “A→ N”, “O
→ N” and “v→ N”. dsmooth case achieves almost a 100%
success rate and dsmooth,l2 achieves a 100% success rate.

A sample of generated adversarial ECG signals are shown
in Fig. 3. Due to the limited space, we only show a case
where an original atrial fibrillation ECG(A) is misclassi-
fied to a normal rhythm(N). Compared with original ECG,
dl2 one presents small but consecutive peaks at multiple lo-
cations, which are almost impossible in cardiac rhythms.
While the dsmooth one presents smooth signal transition
and preserves more similar pattern to the original. It is also
noticed that the Soft-DTW one present suspicious spikes,
the extent of which falls in between L2-norm and ‘smooth-
ness+L2’ cases. Table 1 shows CPU time per iteration of
softDTW is about 12 seconds, and it takes hundreds of it-
erations to generate one example. It is time-consuming to
generate large number of them (600 in our perceptual study)
using softDTW. Since the proposed attacks as shown in Ta-
ble 3 almost achieve 100% success rate, without affecting
major conclusions, we exclude softDTW in evaluation.

Human Perceptual Study We conduct an extensive hu-
man perceptual study on both ordinary people and cardiolo-
gists to evaluate the imperceptibility of adversarial ECGs.

Ordinary human participants without medical expertise
are recruited from Amazon Mechanical Turk(AMT). Thus,
they are only required to compare the adversarial examples
generated using different similarity metrics and choose the
one closer to the original ECG. For each similarity metric,
we generate 600 adversarial examples (each source-target
pair accounts for 50 examples). In the study, the participants
are asked to observe an original example and its two adver-
sarial ones generated using two different similarity metrics.
Then they need to choose one of the two adversarial exam-
ples that is closer to the original. The perceptual study com-
prises three parts, (i) dsmooth versus dl2, (ii) dsmooth,l2 ver-
sus dl2, and (iii) dsmooth versus dsmooth,l2. To avoid labeling
bias, we allow each user to conduct at most 60 trials for each
part. For each tuple of an original example and its two ad-
versarial examples, we collect 5 annotations from different
participants. In total, we collected 9000 annotations from 57
AMT users. The study results are shown in Table 4, where
“triumphs” denotes the metric got 4 or 5 votes for all 5 an-
notations, and “wins” denotes that the metric got 3 votes for
5, i.e., a narrow victory.

Compared with the dl2-generated examples, the dsmooth-
generated ones are voted closer to the original in 81.34% of
the trials. This indicates that the smoothness metric encour-
ages generated adversarial examples preserve similar pat-
terns to original ones, so they are more likely to be imper-



dl2 dsmooth dsmooth,l2

A N O v A N O v A N O v
A / 97.22% 100% 100% / 100% 100% 100% / 100.0% 100.0% 100.0%
N 100% / 100% 100% 100% / 100% 100% 100% / 100% 100%
O 99.44% 95.0% / 100% 99.72% 100% / 100% 100% 100% / 100%
v 100% 99.55% 100% / 100% 100% 100% / 100% 100% 100% /

Table 3: Success rates of targeted attacks (Type I Attack)

i
dsmooth wins(%) dl2 wins(%)

triumphs wins total triumphs wins total
58.67 22.67 81.34 10 8.66 18.66

ii
dsmooth,l2 wins(%) dl2 wins(%)

triumphs wins total triumphs wins total
65.5 18.5 84 7.83 8.17 16

iii
dsmooth wins(%) dsmooth,l2 wins(%)

triumphs wins total triumphs wins total
31.83 27.83 59.67 15.83 24.5 40.33

Table 4: Human perceptual study (AMT participants)

ceptible. When comparing dsmooth and dsmooth,l2, dsmooth

get a few more votes (59.67%) than dsmooth,l2, which further
validates that the smoothness metric better qualifies human
similarity perception on line curves than L2 norm. The data
provide sufficient evidence (p values < 0.0001 using z-test)
at the 5% level of significance to conclude that most people
think dsmooth is more imperceptible than dl2 and dsmooth,l2.

Besides participants on AMT, we also invite three cardi-
ologists to evaluate whether added perturbations arouse their
suspicion. The cardiologists are asked to classify the given
ECG and its adversarial counterparts into 4 classes(A, N, O,
v) based on their medical expertise. We focus on the cases
of “N→ A”, “N→ O”, “A→ N”, “O→ N”, which misclas-
sify a normal rhythm to an arrhythmia or vise versa. For the
above 4 source-target pairs, we randomly select 6 type N, 3
type A and 3 type O, then we generate adversarial examples
with different similarity metrics. Thus, we have 48 samples
(original and adversarial ones) and shuffle them randomly.
For every sample, we collect annotations from all three car-
diologists. The results are shown in Table 5.

Idx Original dl2 dsmooth dsmooth,l2

1 100% 100% 100% 100%
2 91.7% 100% 100% 100%
3 100% 100% 100% 100%

Table 5: Human Perceptual Study (Cardiologists)

Each row refers to one cardiologist. The first column de-
notes the percentage of the cardiologist’s annotations the
same as the labels in PhyDB dataset. Only one cardiologist

annotates a type A instance as type O. The last three columns
show the percentage of adversarial examples which are an-
notated the same type as their original counterparts. The re-
sults show that in all cases, cardiologists give the same anno-
tations to adversarial examples as their original counterparts.
The possible reason is that most perturbations generally oc-
cur on the wave valley, but the cardiologists give annotations
based on the peak-to-peak intervals. They think the subtle
perturbations possibly caused by instrument noise. The re-
sults that adversarial signals can be correctly classified by
cardiologists but wrongly classified by the classifier prove
that our attacks successfully fool the classifier to disable its
function of diagnosis assistance without arousing suspicion.

Evaluation for Type II Attack
Success Rate of Targeted Attacks We implement our at-
tack strategy for Type II attack under the framework of Clev-
erHans (Papernot et al. 2018). During training, we maxi-
mize the objective function using the Adam (Kingma and
Ba 2014) optimizer, and approximate the gradient of the
expected value through independently sampling transforma-
tions at each gradient decent step. Among 12 source-target
pairs, we randomly choose 10 samples of each pair to gener-
ate adversarial perturbations by applying the attack strategy
in Section . We generate one perturbation from one sample.
To generate filtering-resistant perturbation, we use rectangu-
lar filter that removes the signal with frequency of lower than
0.05Hz and 50/60Hz. Because the rectangular filter can re-
move all the energy within the chosen frequency band which
is stricter than other filters. In this evaluation, we generate
the perturbation at full length, i.e., wd is equal to 9000.

During testing, we apply the generated perturbations to
100 randomly-chosen samples from every source class to see
whether the adversarial examples could mislead the classi-
fier universally. By source class, we mean the chosen test-
ing sample has the same class with training sample gener-
ating perturbation. Before adding perturbations to the tar-
get sample, we apply a filter on the perturbations to test
the filtering-resistance. The filter has two choices: Filter 1
is the rectangular filter which is the same as the training pro-
cedure. Filter 2 is the combination of two common filters
used in ECG signal processing, a high-pass butterworth filter
with 0.05Hz cutting frequency and notch filters for 50/60Hz
power line noises. To mimic the sampling point uncertainty
of the on-the-fly signals, we randomly shift perturbations
and add them to the original signals for 200 times.The av-
erage success rates are shown in Table 6. The row refers



Figure 3: A sample of generated adversarial ECG signal.
Figure 4: Success attack rates with different sized
windows.

to origin class and the column refers to target class. In one
cell, the top success attack rate is for filter 1 and the bottom
is for filter 2. Our attack strategy achieves pretty high suc-
cess rates, which indicates that the generated perturbation is
filtering-resistant, skewing-resistant and universal.

A N O v

A / 99.97%/
99.96%

99.82%/
99.86%

100%/
100%

N 100%/
100% / 100%/

100%
99.83%/
99.75%

O 100%/
100%

99.76%/
99.73% / 100%/

100%

v
100%/
100%

97.63%/
97.45%

98.70%/
98.76% /

Table 6: Success rates of targeted attacks (Type II Attack)

Impact of Window Size In this section, we evaluate the
success attack rates with different sized windows wd. As
mentioned before, the smaller the window size, the lower
the chance that the attacker can be perceived. In this eval-
uation, we generate perturbations on different sized win-
dows 9000,7500,6000,4500,3000 and 1500. For each win-
dow size, we generate adversarial examples under the same
conditions as the previous section – randomly 10 samples
for each source-target pairs. Then we apply filters, shift the
perturbation randomly and add it to other samples from the
original source class. The results are shown in Figure 4. The
legend refers to target class under different filters. In most
cases, the success rate decreases a lot when the window size
decreases. However, they slowly decrease and even remain
almost unchanged under the cases of “A → O”, “N → O”
and “v → O”. All these cases are from a certain class to
class O. This is mainly because class O (refers to other ab-
normal arrhythmia except atrial fibrillation) may cover an
expansive input space so that it is easier to misclassify an
other class to class O. Besides, we find that except for class
O, the success rate decrease more slowly when the target

class is A. The possible reason is the inherent property of
class A, i.e., if a certain part of the ECG signal is regraded
as atrial fibrillation, then the whole ECG segment will be
classified as class A. The success attack rates under different
filters are quite similar, which shows the filtering-resistance
of our generated perturbations.

Conclusion
This paper proposes ECGadv to generate adversarial ECG
examples to misguide arrhythmia classification systems. The
existing attacks in image domain could not be directly appli-
cable due to the distinct properties of ECGs in visualization
and dynamic properties. We analyze the properties of ECGs
to design effective attacks schemes under two attacks mod-
els respectively. Our results demonstrate the blind spots of
DNN-powered diagnosis systems under adversarial attacks
to call attention to adequate countermeasures.
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